{
"cells": [
{
"cell_type": "code",
"execution_count": 17,
"id": "79af4de2",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import numpy as np\n",
"\n",
"try:\n",
" import tensorflow # required in Colab to avoid protobuf compatibility issues\n",
"except ImportError:\n",
" pass\n",
"\n",
"import torch\n",
"import pandas as pd\n",
"import whisper\n",
"import torchaudio\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"\n",
"DEVICE = \"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "dabded15",
"metadata": {},
"outputs": [],
"source": [
"class SpeechData(torch.utils.data.Dataset):\n",
" def __init__(self, device=DEVICE):\n",
" self.device = device\n",
" self.dataset = [\n",
" \"./samples/knn-vc-ablation/amazing_sound_1s.wav\",\n",
" \"./samples/knn-vc-ablation/amazing_sound_3s.wav\",\n",
" \"./samples/knn-vc-ablation/amazing_sound_5s.wav\",\n",
" \"./samples/knn-vc-ablation/amazing_sound_10s.wav\",\n",
" \"./samples/knn-vc-ablation/amazing_sound_15s.wav\",\n",
" ]\n",
" self.text = \"THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRAWLING AND CREEPING AROUND HER SHE HAD STRUGGLED IN DUMB SPEECHLESS TERROR AGAINST SOME MIGHTY GRASPING THAT STROVE FOR HER LIFE WITH GNARLED AND CREEPING FINGERS BUT NOW AT LAST WEAKLY SHE OPENED HER EYES AND QUESTIONED\"\n",
" \n",
" def __len__(self):\n",
" return len(self.dataset)\n",
" \n",
" def __getitem__(self, item):\n",
" path = self.dataset[item]\n",
" audio, sr = torchaudio.load(path)\n",
" assert sr == 16000\n",
" audio = whisper.pad_or_trim(audio.flatten()).to(self.device)\n",
" mel = whisper.log_mel_spectrogram(audio)\n",
" return (mel, self.text, audio)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "6e9792fe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model is English-only and has 71,825,408 parameters.\n"
]
}
],
"source": [
"loader = torch.utils.data.DataLoader(SpeechData(), batch_size=1)\n",
"model = whisper.load_model(\"base.en\")\n",
"print(\n",
" f\"Model is {'multilingual' if model.is_multilingual else 'English-only'} \"\n",
" f\"and has {sum(np.prod(p.shape) for p in model.parameters()):,} parameters.\"\n",
")\n",
"options = whisper.DecodingOptions(language=\"en\", without_timestamps=True)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "45e1dc8e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 9.56it/s]\n"
]
}
],
"source": [
"hypotheses = []\n",
"references = []\n",
"from tqdm import tqdm\n",
"for mels, texts, audio in tqdm(loader):\n",
" results = model.decode(mels, options)\n",
" hypotheses.extend([result.text for result in results])\n",
" references.extend(texts)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "028a4d4b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['The',\n",
" \"In that in where old Henry Stone's hidden pawling and creeping around her, she struggled in Stone's speechless terror against someone I did grasping his jaw for her life, was gnawled and creeping fingers, but now with last, briefly, she opened her eyes and questioned.\",\n",
" 'In that in web of endless pains have been crawling and creeping around her, she has struggled in stone speechless terror against some mighty grasping that stroll for her life, was gnarled and creeping fingers, but now at last, weekly, she opened her eyes and questioned.',\n",
" 'In that in web of endless veins had been crawling and creeping around her, she struggled in bones speechless terror against some mighty grasping that stole for her life, was gnawled and creeping fingers, but now at last, weak weak, she opened her eyes and questioned.',\n",
" 'Then that in web of endless veins had been crawling and creeping around her, she had struggled in done speechless terror against somebody grasping this jaw for her life, was gnawled and creeping fingers, but now at last, weakly, she opened her eyes and questioned.']"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hypotheses"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "dbe983b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRAWLING AND CREEPING AROUND HER SHE HAD STRUGGLED IN DUMB SPEECHLESS TERROR AGAINST SOME MIGHTY GRASPING THAT STROVE FOR HER LIFE WITH GNARLED AND CREEPING FINGERS BUT NOW AT LAST WEAKLY SHE OPENED HER EYES AND QUESTIONED',\n",
" 'THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRAWLING AND CREEPING AROUND HER SHE HAD STRUGGLED IN DUMB SPEECHLESS TERROR AGAINST SOME MIGHTY GRASPING THAT STROVE FOR HER LIFE WITH GNARLED AND CREEPING FINGERS BUT NOW AT LAST WEAKLY SHE OPENED HER EYES AND QUESTIONED',\n",
" 'THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRAWLING AND CREEPING AROUND HER SHE HAD STRUGGLED IN DUMB SPEECHLESS TERROR AGAINST SOME MIGHTY GRASPING THAT STROVE FOR HER LIFE WITH GNARLED AND CREEPING FINGERS BUT NOW AT LAST WEAKLY SHE OPENED HER EYES AND QUESTIONED',\n",
" 'THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRAWLING AND CREEPING AROUND HER SHE HAD STRUGGLED IN DUMB SPEECHLESS TERROR AGAINST SOME MIGHTY GRASPING THAT STROVE FOR HER LIFE WITH GNARLED AND CREEPING FINGERS BUT NOW AT LAST WEAKLY SHE OPENED HER EYES AND QUESTIONED',\n",
" 'THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRAWLING AND CREEPING AROUND HER SHE HAD STRUGGLED IN DUMB SPEECHLESS TERROR AGAINST SOME MIGHTY GRASPING THAT STROVE FOR HER LIFE WITH GNARLED AND CREEPING FINGERS BUT NOW AT LAST WEAKLY SHE OPENED HER EYES AND QUESTIONED']"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"references"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "763f73fa",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
hypothesis
\n",
"
reference
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
The
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
\n",
"
\n",
"
1
\n",
"
In that in where old Henry Stone's hidden pawl...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
\n",
"
\n",
"
2
\n",
"
In that in web of endless pains have been craw...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
\n",
"
\n",
"
3
\n",
"
In that in web of endless veins had been crawl...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
\n",
"
\n",
"
4
\n",
"
Then that in web of endless veins had been cra...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" hypothesis \\\n",
"0 The \n",
"1 In that in where old Henry Stone's hidden pawl... \n",
"2 In that in web of endless pains have been craw... \n",
"3 In that in web of endless veins had been crawl... \n",
"4 Then that in web of endless veins had been cra... \n",
"\n",
" reference \n",
"0 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"1 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"2 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"3 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"4 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.DataFrame(dict(hypothesis=hypotheses, reference=references))\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "c65328f8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
hypothesis
\n",
"
reference
\n",
"
hypothesis_clean
\n",
"
reference_clean
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
The
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
the
\n",
"
the net and web of endless things had been cra...
\n",
"
\n",
"
\n",
"
1
\n",
"
In that in where old Henry Stone's hidden pawl...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
in that in where old henry stone is hidden paw...
\n",
"
the net and web of endless things had been cra...
\n",
"
\n",
"
\n",
"
2
\n",
"
In that in web of endless pains have been craw...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
in that in web of endless pains have been craw...
\n",
"
the net and web of endless things had been cra...
\n",
"
\n",
"
\n",
"
3
\n",
"
In that in web of endless veins had been crawl...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
in that in web of endless veins had been crawl...
\n",
"
the net and web of endless things had been cra...
\n",
"
\n",
"
\n",
"
4
\n",
"
Then that in web of endless veins had been cra...
\n",
"
THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA...
\n",
"
then that in web of endless veins had been cra...
\n",
"
the net and web of endless things had been cra...
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" hypothesis \\\n",
"0 The \n",
"1 In that in where old Henry Stone's hidden pawl... \n",
"2 In that in web of endless pains have been craw... \n",
"3 In that in web of endless veins had been crawl... \n",
"4 Then that in web of endless veins had been cra... \n",
"\n",
" reference \\\n",
"0 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"1 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"2 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"3 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"4 THE NET AND WEB OF ENDLESS THINGS HAD BEEN CRA... \n",
"\n",
" hypothesis_clean \\\n",
"0 the \n",
"1 in that in where old henry stone is hidden paw... \n",
"2 in that in web of endless pains have been craw... \n",
"3 in that in web of endless veins had been crawl... \n",
"4 then that in web of endless veins had been cra... \n",
"\n",
" reference_clean \n",
"0 the net and web of endless things had been cra... \n",
"1 the net and web of endless things had been cra... \n",
"2 the net and web of endless things had been cra... \n",
"3 the net and web of endless things had been cra... \n",
"4 the net and web of endless things had been cra... "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import jiwer\n",
"from whisper.normalizers import EnglishTextNormalizer\n",
"\n",
"normalizer = EnglishTextNormalizer()\n",
"data[\"hypothesis_clean\"] = [normalizer(text) for text in data[\"hypothesis\"]]\n",
"data[\"reference_clean\"] = [normalizer(text) for text in data[\"reference\"]]\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "69d07cfa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WER: 97.83 %\n",
"WER: 47.83 %\n",
"WER: 21.74 %\n",
"WER: 23.91 %\n",
"WER: 23.91 %\n"
]
}
],
"source": [
"for i in range(5):\n",
" wer = jiwer.wer(list(data[\"reference_clean\"])[i], list(data[\"hypothesis_clean\"])[i])\n",
"\n",
" print(f\"WER: {wer * 100:.2f} %\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "545a1d85",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 72.30it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([ 0.9981, -0.9844, 0.9353, 0.9083, 0.9383, 0.9480, 0.9983, 0.9970,\n",
" 0.9981, 0.9997, 0.9964, 0.9978, 0.9990, 0.9635, 0.9934, 0.9975,\n",
" 0.8338, 0.9894, 0.9578, -0.9975, 0.9953, 0.9596, 0.9953, 0.9887,\n",
" 0.9954, 0.9746, 0.9962, -0.9790, 0.8314, 0.9283, 0.9997, 0.9971,\n",
" 0.9963, 0.6858, 0.9914, 0.9941, 0.9965, 0.9992, -0.9959, 0.9965,\n",
" 0.9994, 0.9944, 0.9959, 0.9996, 0.9948, 0.9970, 0.9976, 0.9999,\n",
" 0.9999, 0.9850, 0.9986, 0.9825, 0.9440, -0.0214, 0.9859, -0.9651,\n",
" 0.9589, 0.9983, 0.9990, 0.9460, 0.9738, 0.9969, 0.9973, 0.3082,\n",
" 0.9769, 0.9979, 0.7766, 0.9944, 0.9991, 0.9967, 0.9934, 0.9946,\n",
" -0.9440, 0.9767, 0.9771, 0.9917, 0.9971, 0.9858, 0.9900, 0.9984,\n",
" 0.9978, 0.9979, 0.9980, 0.9986, 0.9974, 0.9953, 0.9976, 0.9990,\n",
" -0.9984, 0.9936, 0.9983, 0.9972, 0.9645, 0.9972, 0.9983, -0.9882,\n",
" 0.9991, 0.9962, 0.9985, 0.9994, -0.9706, 0.9977, 0.9863, -0.1965,\n",
" 0.9985, -0.9956, 0.9946, 0.9948, 0.9938, 0.8593, 0.9988, 0.9999,\n",
" 0.9963, -0.1762, 0.0787, 0.9997, 0.9964, 0.9922, 0.9989, -0.9921,\n",
" 0.9869, 0.9956, 0.7127, 0.9973, 0.9936, 0.9966, 0.9995, 0.9888,\n",
" 0.9641, 0.9744, 0.9979, 0.9333, 0.9849, -0.7105, -0.0874, 0.9975,\n",
" 0.9906, -0.9769, 0.9971, -0.9742, 0.9845, 0.9947, -0.9498, 0.9937,\n",
" 0.9999, 0.4203, -0.7757, -0.5552, 0.9942, 0.9936, 0.9713, 0.9356,\n",
" 0.9943, -0.9583, 0.9970, 0.8655, -0.9027, 0.9991, 0.9996, 0.9302,\n",
" 0.8121, -0.9828, -0.6402, 0.9943, -0.9744, 0.9938, 0.9943, 0.9946,\n",
" 0.9839, 0.7040, 0.9864, 0.9982, 0.9653, 0.9998, 0.9920, 0.9784,\n",
" 0.9988, 0.9966, 0.9994, 0.9944, 0.9996, 0.9905, 0.8299, 0.9122,\n",
" 0.9917, 0.9949, 0.9833, 0.9912, 0.9570, 0.9853, -0.9927, 0.9703,\n",
" 0.9864, 0.0318, 0.4404, 0.9747, -0.9948, 0.9860, 0.9943, 0.9330,\n",
" 0.9932, 0.9994, 0.9998, 0.9904, 0.9635, 0.9971, 0.9996, 0.8853,\n",
" -0.9378, 0.9992, 0.9753, 0.9997, 0.9925, 0.9943, 0.9975, 0.9958,\n",
" 0.9813, 0.9821, 0.9966, 0.9993, 0.9887, 0.9965, 0.9994, 0.3614,\n",
" 0.9973, -0.9772, 0.9683, 0.9805, 0.9967, 0.9876, -1.0000, 0.9993,\n",
" 0.9814, 0.9088, 0.8852, 0.9990, 0.9921, 0.9939, 0.8067, 0.9989,\n",
" 0.9994, 0.9997, 0.9991, 0.9305, 0.9993, 0.9956, 0.9954, 0.9965,\n",
" 0.9839, 0.9836, 0.9771, 0.9105, 0.9931, 0.9981, -0.7170, 0.9975,\n",
" -0.9933, 0.9862, 0.9985, 0.9864, 0.2334, 0.9991, 0.9959, 0.9952,\n",
" 0.9853, 0.9868, 0.9983, 0.9952, -0.9288, 0.9975, 0.9988, -0.9569,\n",
" -0.8888, -0.9877, 0.9765, 0.9275, 0.9941, -0.9216, 0.9995, 0.9962,\n",
" 0.9876, 0.9995, 0.9757, 0.9902, 0.9980, 0.9994, -0.5810, 0.9983,\n",
" 0.9967, 0.9211, 0.9729, -0.8414, 0.9602, -0.8967, 0.1608, -0.1039,\n",
" -0.9412, 0.0535, 0.9929, 0.8147, 0.9994, 0.9744, 0.9992, 0.9969,\n",
" 0.9884, 0.9976, 0.3082, 0.9823, 0.9949, -0.5127, 0.9909, -0.9105,\n",
" -0.9975, 0.9982, 0.9910, 0.9808, 0.9991, 0.2477, 0.9941, 0.9964,\n",
" 0.9970, 0.6560, 0.9962, 0.9962, 0.9966, 0.9963, 0.9930, 0.9903,\n",
" 0.9974, 0.9843, 0.9961, 0.8918, 0.9900, 0.9970, 0.9998, 0.9791,\n",
" 0.9974, 0.9710, 0.5504, 0.9937, -0.9263, 0.9974, -0.8524, -0.9995,\n",
" 0.9711, 0.3348, 0.9976, 0.9770, 0.9636, 0.9986, 0.9905, 0.9989,\n",
" 0.9995, 0.9973, 0.9970, 0.9969, 0.9997, 0.9949, 0.9754, -0.9891,\n",
" 0.9961, -0.0819, 0.9982, 0.9870, 0.9883, -0.9899, 0.9899, 0.9980,\n",
" 0.9780, 0.9974, 0.9944, 0.9685, 0.9982, 0.9809, 0.9992, -0.7607,\n",
" 0.9922, 0.9983, 0.9985, 0.9871, 0.9986, 0.9962, 0.9955, -0.9876,\n",
" 0.9984, 0.9979, 0.9997, 0.9980, 0.9101, 0.9930, 0.7889, 0.9934,\n",
" 0.9960, 0.9931, 0.9865, 0.9952, -0.2948, 0.9964, -0.6116, -0.9989,\n",
" -0.9956, 0.9968, 0.9985, 0.9973, 0.8637, 0.9978, -0.9749, 0.9991,\n",
" 0.9985, 0.9984, 0.5852, -0.9869, 0.9879, 0.9979, 0.9990, 0.9977,\n",
" -0.6244, 0.9969, 0.9942, 0.9788, 0.9991, -0.8973, 0.9980, 0.9917,\n",
" 0.9997, 0.9993, 0.9986, 0.9916, -0.2079, 0.9908, 0.9942, 0.9943,\n",
" 0.9949, 0.6439, 0.9958, 0.9659, 0.9978, -0.9312, 0.9966, 0.9771,\n",
" 0.9820, 0.4393, 0.9988, -0.9002, 0.9863, 0.9629, 0.5071, 0.9996,\n",
" -0.5554, 0.9435, 0.9993, -0.3745, 0.9047, 0.9859, 0.9854, 0.9248,\n",
" 0.7041, 0.9940, 0.9954, 0.9889, 0.9995, 0.8817, 0.9918, 0.9636,\n",
" 0.9985, 0.9903, 0.9837, 0.8778, 0.8770, 0.9963, 0.9987, 0.9987,\n",
" 0.9969, 0.9182, 0.6843, 0.9994, 0.9964, 0.9998, 0.9913, 0.9861,\n",
" 0.9982, 0.9838, 0.9994, 0.9913, 0.9972, 0.9989, 0.9933, 0.9883,\n",
" -0.9972, 0.9988, 0.9984, -0.7982, 0.9838, 0.9955, 0.9989, -0.9744,\n",
" 0.9743, 0.9879, 0.9975, 0.9895, 0.9988, 0.9906, 0.9958, 0.9402,\n",
" 0.9904, 0.9974, 0.4660, 0.9994, 0.9984, 0.9833, 0.9915, 0.9974],\n",
" device='cuda:0')\n",
"tensor(0.8263, device='cuda:0')\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"import torchaudio\n",
"import torch\n",
"from speechbrain.pretrained import EncoderClassifier\n",
"cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)\n",
"classifier = EncoderClassifier.from_hparams(source=\"speechbrain/spkrec-xvect-voxceleb\", savedir=\"pretrained_models/spkrec-xvect-voxceleb\", run_opts={\"device\":\"cuda\"})\n",
"target_signal, fs =torchaudio.load('./audio/7729.wav')\n",
"target_signal_embeddings = classifier.encode_batch(target_signal).squeeze()\n",
"for mels, texts, audio in tqdm(loader):\n",
" embedding = classifier.encode_batch(audio).squeeze()\n",
" print(cos(embedding, target_signal_embeddings))"
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "b36ade7b",
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt\n",
"import matplotlib\n",
"from importlib import reload\n",
"plt.style.use('ggplot')\n",
"matplotlib=reload(matplotlib)\n",
"plt.figure(figsize=(6,4.5))\n",
"x = [1,3,5,10,15]\n",
"y1 = [17.39,15.22,17.39,19.57,19.57]\n",
"y2 = [97.83,47.83,21.74,23.91,23.91]\n",
"plt.subplot(211)\n",
"plt.plot(x,y1,'--bo', label=\"Phoneme Hallucinator (Ours)\")\n",
"plt.plot(x,y2,'--r+', label=\"kNN-VC\")\n",
"plt.ylabel(\"Word Error Rate\")\n",
"\n",
"plt.legend()\n",
"plt.xticks([])\n",
"plt.subplot(212)\n",
"y1 = [0.8077,0.8222,0.8203,0.8221,0.8241]\n",
"y2 = [0.7524,0.8235, 0.8255, 0.8242, 0.8263]\n",
"plt.plot(x,y1,'--bo', label=\"Phoneme Hallucinator (Ours)\")\n",
"plt.plot(x,y2,'--r+', label=\"kNN-VC\")\n",
"plt.xlabel(\"Target Voice Duration (s)\")\n",
"plt.ylabel(\"Speaker Similarity (cos)\")\n",
"plt.xticks(x)\n",
"#plt.legend()\n",
"plt.tight_layout()\n",
"plt.savefig(\"knn-vc-ablation.pdf\",dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "243e3182",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(0.9423, device='cuda:0')\n",
"tensor(0.9309, device='cuda:0')\n"
]
}
],
"source": [
"import torchaudio\n",
"import torch\n",
"from speechbrain.pretrained import EncoderClassifier\n",
"cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)\n",
"classifier = EncoderClassifier.from_hparams(source=\"speechbrain/spkrec-xvect-voxceleb\", savedir=\"pretrained_models/spkrec-xvect-voxceleb\", run_opts={\"device\":\"cuda\"})\n",
"target_signal, fs =torchaudio.load('./audio/7729_short.wav')\n",
"our_signal, fs =torchaudio.load('./amazing_sound.wav')\n",
"freevc_signal, fs =torchaudio.load('./freevc.wav')\n",
"target_signal_embeddings = classifier.encode_batch(target_signal).squeeze()\n",
"our_signal_embeddings = classifier.encode_batch(our_signal).squeeze()\n",
"freevc_signal_embeddings = classifier.encode_batch(freevc_signal).squeeze()\n",
"print(cos(our_signal_embeddings, target_signal_embeddings))\n",
"print(cos(freevc_signal_embeddings, target_signal_embeddings))"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3dd5402f",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlEAAAOXCAYAAAC0Y2dBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd5xU1f3/8fe9d2a203apAqKAoKL+7KJiiSBiiUo0auwlxii2bxJTTKzfxOjXFDWxgNhFk6jYSxQVe29gQ1B6Z+v0ueX3x7Ijw87A7jK7M7Pzej4ePNx75t5zzgBeZuY953wMz/M8AQAAAAAAAAAAIIWZ6wkAAAAAAAAAAADkI0IUAAAAAAAAAACANAhRAAAAAAAAAAAA0iBEAQAAAAAAAAAASIMQBQAAAAAAAAAAIA1CFAAAAAAAAAAAgDQIUQAAAAAAAAAAANIgRAEAAAAAAAAAAEiDEAUAAAAAAAAAACANQhQAAAAAAAAAAIA0CFEAAAAAAAAAAADSIEQBAAAAAAAAAABIgxAFAAAAAAAAAAAgDUIUAAAAAAAAAACANAhRAAAAAAAAAAAA0iBEAQAAAAAAAAAASIMQBQAAAAAAAAAAIA1CFAAAAAAAAAAAgDQIUQAAAAAAAAAAANIgRAEAAAAAAAAAAEiDEAUAAAAAAAAAACANQhQAAAAAAAAAAIA0CFEAAAAAAAAAAADSIEQBAAAAAAAAAABIgxAFAAAAAAAAAAAgDUIUAAAAAAAAAACANAhRAAAAAAAAAAAA0iBEAQAAAAAAAAAASIMQBQAAAAAAAAAAIA1frieAzUskEvr66681f/58NTY2KhQKqaysTFVVVdp666214447qqysLKtj1tfX65NPPtHixYsVCoUUCATUr18/7bDDDho+fHhWxwIAAAAAAAAAIB8RouSx999/XzNmzNCsWbMUi8UynmdZlvbee2/9+Mc/1mGHHSbDMDo85gcffKDbb79db731lhzHSXvO1ltvrVNOOUUnnXSS/H5/h8cCAAAAAAAAACCfGZ7nebmeBFLV19fr2muv1dNPP93ua3fbbTddd911GjZsWLuuSyQSuu666/Tggw+2+ZrttttOt9xyS7vHAgAAAAAAAACgEBCi5Jm6ujqdfvrp+vrrrzvcR58+fXT//fdrxIgRbTrftm1ddNFFmjVrVofGeuCBB9jiCwAAAAAAAADQ7RCi5JkzzzxTb731VkpbSUmJJk+erPHjx2vkyJGqrKxUOBzWggULNHv2bP373/9WMBhMuWbw4MF65plnVFpautkxr7/+et11110pbb1799Ypp5yi8ePHa+DAgaqvr9fcuXN1zz336LPPPks5d+jQoZo5c6YqKys7+KwBAAAAAAAAAMg/hCh55MUXX9SUKVNS2gYNGqRp06ZtclXJ8uXL9bOf/Uzz5s1Lab/kkkv085//fJNjfvXVVzrmmGO04V+DkSNHavr06erfv3+r8z3P03XXXad77703pf2ss87Sr3/9602OBQAAAAAAAABAITFzPQF8b+bMmSnHpmnqn//852a35Ro0aJCmTp2q8vLylPYnn3xys2P+/e9/TwlQKioqNG3atLQBiiQZhqHf/e53OuSQQ1LaZ8yYoVWrVm12PAAAAAAAAAAACgUhSh55++23U47HjRunHXbYoU3XDhw4UEcffXRK27fffqu1a9dmvObLL7/UK6+8ktJ20UUXaeDAgZsd76qrrkrZKiwajWr69OltmisAAAAAAAAAAIWAECVPNDU1KRwOp7Ttscce7epjzz33bNW2evXqjOc/99xzKcfl5eU67rjj2jRWv379dOihh6a0vfDCC226FgAAAAAAAACAQkCIkic2DlAkqVevXu3qI935iUQi4/mzZs1KOZ4wYUK7isNPnjw55XjlypWaO3dum68HAAAAAAAAACCfEaLkid69e8s0U/84Ghoa2tVHuvNramrSnrt8+XLNnz8/pW2vvfZq13i77rqr/H5/Sturr77arj4AAAAAAAAAAMhXhCh5IhAIaOTIkSltH374Ybv62Pj8/v37a6uttkp77tdff92qbbfddmvXeKWlpa1qtsybN69dfQAAAAAAAAAAkK8IUfLIkUcemXL82muvpQ070lm9erUee+yxlLZN1Tf59ttvU459Pp+GDRvWtoluYPjw4SnH3333Xbv7AAAAAAAAAAAgHxGi5JGf/OQnGjhwYPLYcRxdcMEFWrRo0SavW716tc4777yUuiqDBw/W2WefnfGaBQsWpBz379+/1XZibTFgwICU44ULF8pxnHb3AwAAAAAAAABAviFEySOVlZW66aabVF5enmxbsmSJjjnmGF133XX64IMP1NDQINu21dTUpE8//VR///vfddRRR+nzzz9PXtO3b19NnTpVFRUVGcdavXp1yvHGYUhbDRo0KOU4Ho+rvr6+Q30BAAAAAAAAAJBPfLmeAFLtsssueuihh/TLX/5S33zzjSQpHA7rnnvu0T333LPJaw3D0KGHHqorrrgiY0H5FhuuWpGaA5yOSBfUhMNhVVdXd6g/AAAAAAAAAADyBSFKHho9erSeeOIJPfPMM3rsscf09ttvb/aasWPH6vLLL29VnD6TjUOU0tLSDs013XWhUKhDfQEAAAAAAAAAkE/YzitPLVy4UO+8846+/PLLNp3/9ttv64wzztC0adMUi8U2e34kEkk5DgQCHZpnuhBl44AGAAAAAAAAAIBCxEqUPGPbtm666Sbdeeedcl032e73+zVmzBgNHz5cVVVVCoVCWrhwoT799NNkaLJ27VrdeOONevLJJ/XPf/5TQ4cOzdXTAAAAAAAAAACg4BGi5BHHcfSLX/xCzz//fLLNMAydcsopOu+889LWOWlsbNQ999yjO+64Q7ZtS5LmzZun008/XQ8//LD69++fdqyysrKU43g83qE5R6PRVm3l5eUd6gsAAAAAAAAAgHxCiJJH7rzzzlYByg033KAf/vCHGa/p0aOHLrroIu2xxx4699xzlUgkJEnLly/X5ZdfrjvvvDPtdRsHHenCkLZId126YvOFoq4uJNf1cj2NTuf3W5Kkb4Or5ElaFw3K87r/80bHGIahysqSlLZgMMbfmQLz3MpP9GVweav20ZWDdPiA/5eVMSzDVO/SCvlNS0PLm4P/RMLJSt/o3gzDUJ8+qa8famtD3GcAZA33GQCdiXsMgM5W7PcZ0zTUu3fuPnMmRMkTtbW1uvXWW1PaTj755E0GKBvad999dfHFF+vGG29Mtr3++uv64IMPtMcee7Q6f+MQJRgMdmDW6YvIF/JKFNf1iiJEabnBJlxHnqSYnZBbJDddtJ9hGAq4Vkpb1E4UzT/U3YXtuloTbWzVXmGWKGonsjKGZZhKuI5cz0v+/SiGeyq2nGG0bnNdj/sMgKzhPgOgM3GPAdDZuM/kFoXl88STTz6ZsqrDMAyde+657erj1FNPVVVVVUrbzJkz057br1+/lOOVK1e2a6wWK1asSDkOBALq1atXh/oCAHSeSl9p2vag3bGViOl4Wh+ceO5mzgQAAAAAACgMhCh54r333ks5Hj16dMZ6JpmUlpZqzz33TGn7+OOP05677bbbphyvWrUqpZB9W20cogwbNkyWZWU4GwCQK10Soqz/BowniQUoAAAAAACgOyBEyRPLli1LOR48eHCH+tn4ulWrVqU9b/jw4SnHtm1r4cKF7R7v22+/TTneZptt2t0HAKDzVVnpQ5Som5DtZqduyYa5icdqFAAAAAAA0A0QouSJjQu0l5SUZDhz08rKylKO4/F42vNGjRrVqi3TqpVMotGoPv/885S27bbbrl19AAC6RqUv878rnbKl1/r/ptu3FQAAAAAAoFAQouSJHj16pBzX19d3qJ/a2tqU40z1SQYNGqQRI0aktG28pdjmfPzxx0okUosRH3TQQe3qAwDQNSp9ZRkfa3KyuaXX+v+K/bwAAAAAAEDhI0TJEzU1NSnHc+fO7VCNkk8//TTluG/fvhnPPeSQQ1KO//vf/yoUCrV5rMcffzzleMCAARozZkybrwcAdJ0S0yefkb5mVWesRHFa0hSxFAUAAAAAABQuQpQ8seuuu6Yc19fX65VXXmlXH3PnztW8efNS2jYuNL+hww47LOU4HA7r0UcfbdNYa9as0fPPP5/SNnHixDbOFADQ1QzDyLilV2cUl3fX10RhOy8AAAAAAFDICFHyxIEHHtiq7YYbblBTU1Obro/H47rmmmva1G+LHXbYQQcffHBK280335yxGP2Grr766pQ6LiUlJTr77LPbNFcAQG5UZdjSqzNWorCZFwAAAAAA6A4IUfLEqFGjdMABB6S0LVy4UD/96U83G2rU19fr/PPPb7WV1y677KJ99913k9decsklMjb4mnBTU5POOeecjGN6nqc///nPevHFF1PaTz75ZPXv33+TYwEAcqvSSr8SpSmrK1Ga/9uyEgUAAAAAAKCQ+XI9AXzvsssu0wcffKBwOJxs+/jjj3XYYYfpuOOO08EHH6zhw4ersrJSoVBICxcu1Ouvv65//etfamhoSOkrEAjod7/73WbHHD16tM4880zdddddybZ58+bpmGOO0amnnqof/OAHGjhwoBoaGjR37lzdc889rcKaoUOH6oILLtjCZw8A6GyVvtK07dlcieKuX4PS8l+28wIAAAAAAIXM8DyPHTfyyOzZs3XBBRcokUh0uA/LsnTjjTfq8MMPb9P5tm1rypQp7a7BIkm9e/fWAw88oBEjRrT72ny0bl1Qrtv9/5cIBJqLS89rWiFP0ppwo1xuBcjAMAz16JH64XtjY1T881F4Xlv7lV5Z+3mr9oGlvXTusEOyMkbPkjKV+gLqW9JDfQIVchxPjsOqFGyaYRiqqalMaVu7Nsh9BkDWcJ8B0Jm4xwDobMV+nzFNQ9XVlZs/sbPGz9nISOvAAw/UQw89pG222aZD12+11Va6//772xygSJLP59Mtt9yik046qV1jjRw5Ug8//HC3CVAAoLvrisLyLXGJR1UUAAAAAADQDRCi5KGddtpJTz75pG644Qbtvvvu8vk2veuaaZraaaed9L//+7969tlntfvuu7d7TL/fr6uuukoPPvig9t9/f5lm5r8aQ4YM0e9+9zvNnDlTw4YNa/dYAIDcqMq4nVcsa99eaemHmigAAAAAAKA7oCZKngoEAjr66KN19NFHKxKJ6PPPP9fixYvV2NiocDis8vJyVVVVadCgQdppp51UWZmd5Ux77LGHpk+frrq6On3yySdavHixQqGQ/H6/+vXrpx133JGVJwBQoDLVRPHkKezEVJHh8fb4PkShJgoAAAAAACh8hCgFoKysTHvssYf22GOPLhuzd+/eOvjgg7tsPABA58sUokhSkx3NToiy/r8u23kBAAAAAIBugBAFAIAiUWGVypDSxhvZqouy8UoUiaUoAAAA6D48z1v/mnfDV9WGbNtOOc9xHKV/5Q0AHZFP9xlDhtH8q1gQogAAUCRMw1C5VaKQE2v1WNZClPUv4FpWohTRayoAAAB0Q57nKR6PKhoNKxaLyHWdtOfV1lopx7ad/jwA6Kh8u8+YpqWSkjKVlpYrECjt1qEKIQoAAEWkyleaPkRJ09YRLStRslWoHgAAAMgFz/PU1FSvaDSUMTgBgGLmuo4ikaAikaBM01JpaYWqqnp1yzCFEAUAgCJS6SuVYg2t2pvsSFb6T9ZE8dys9AcAAAB0Nc/z1NCwTtFoqM3X2DavfwF0rny+z7iuo3C4Ua7rqGfP6m4XpJi5ngAAAOg6mYrLZ70mCtt5AQAAoAB1JEABADSLRkNqaFjX7XanYCUKAABFJHOIkqXtvDaqiQIAAAAUkpYtvDbm8wVUWlqukpJSmaal5sLK3z9uWanfU3ac/P3GOIDClA/3meZsxJPrOorFmutF2XY85ZxoNCTTtNSjR+8un19nIUQBAKCIVFqZQpQsbedFTRQAAAAUKM/zFIlsHKAY6t27r0pKyjZ57cYfbnoeS7IBZFc+3Wcsyye/v0SVlT0Vi0VUV7dG2uDLlNFoqFvVR2E7LwAAikhVppUo2Sosv/6/LiEKAAAACkw8HpXnpRaRb0uAAgDFrKSkTL17901pc11H8Xh2PmfIB4QoAAAUkUzbecVdW3HX3uL+NwxPCFIAAABQSKLRcMqxzxcgQAGANigpKZPPF0hp6061pQhRAAAoIplCFElqytKWXi1aQpRusnoXAAAA3Vwslvp6uLS0PEczAYDCs/E9c+N7aiEjRAEAoIhsKkTJfnF5imkCAACgMHhec6HkDZWUZH7tDABItfE903WdblMvlRAFAIAiEjB9Cpi+tI8F7WhWxmh5keQmXyuxFAUAAAD5Ld0HfaZp5WAmAFCYDKP1PZMQBQAAFKSMxeWzFKK461eieB4rUQAAAFAo0n3Qx5eBAKCtjLR7eROiAACAAlRppQ9RmrIUorS8RmoJU6iJAgAAgELE61gAaLvufM8kRAEAoMhkqouS7ZUobjf5xgkAAAAAAChehCgAABSZjCGKk+2aKIQoAAAAAACgsBGiAABQZDp7JUpLdtJSE6U7L+kFAAAAAADdGyEKAABFJlNh+WzVRPGS23m1IEUBAAAAAACFiRAFAIAik2klStiJyfHctI+1R3I7L215XwAAAAAAALlEiAIAQJGptNKHKJIUsmNb3H9LJZSWmihs5wUAAAAAAAoVIQoAAEUm03ZeUnaKy39fWJ6VKAAAAAAAoLD5cj0BAADQtcqsgEwZcpNrRr6XjeLyLTVRvNbdAwAAAAA2Y8WK5fruu2+1cuUKhUIhua6jsrJy9e3bV0OGbK1ttx0u0+S78UBXIUQBAKDIGIahSl+pGu1Iq8eyUVx+45ooBvt5AQAAAMAmffvtAj311OOaPftlrV69apPnVlRUaJ999tXhh/9Qe+89totmCBQvQhQAAIpQphAlOytRmrGZFwAAAABs2po1q3XLLX/TK6+8lPxC2uaEQiHNmvWiZs16UaNH76BLL71MO+44ppNnChQv1n0BAFCEKjPURclGiOJSEwUAAAAANuuNN2br1FN/rJdffrHNAcrGvvrqC/3852dp+vQ7OtwHgE1jJQoAAEWoM0OUlhfujteynVfzll68oAcAAACAZo8//qj+8pc/t3qf5PP5tOeee+sHP5igbbYZrpqavgoE/Fq7do2WL1+u119/Va+/PluNjQ3Ja1zX1d13T9Py5ct0+eVXUS8FyDJCFAAAilCl1Xkhiu068uQp4Tqqi4fUO1Ahv99UIuFQbB4AAABA0Zs1679pA5Tdd99Tv/rV7zR48JBW1/To0VPbbjtC++9/gC6+OKypU/+pxx77j1z3+x0AXnjhWZWVleuXv/xNpz8HoJgQSwIAUISqMqxEyUpheUnBeHM/q2ONCtkxSZLPZ21x3wAAAABQyL777ltdd901rQKUk08+XTfddFvaAGVj5eXluuSSX+n66/8qv9+f8tjjjz+i5557OqtzBoodIQoAAEUo43ZeTjQr226FE3FF7LgkaUW0XnHXlmEQpAAAAAAoXp7n6frr/1fRaOqX14477gT9/OcXtru/sWP311VX/anV9l033fQXrVu3dovmCuB7hCgAABShTCGK47mKuomsjNEYiyju2nI8V0sjtXJcV6Yp+Xy8/AAAAABQfF5++SXNnftZStvw4SM0ZcqlHe7zwAMP1tFH/yilLRhs0r33Tu9wnwBSURMFAIAilGk7L6m5LkqZFcjKOPWRsKrLKyVXWh6r1+DSPjJNQ5ZlyHEokAIAAACgeDzwwN2t2n75y9/K59uyj2h/9rMLNHv2y6qtXZdse/rpJ3TWWT9Tr169tqjvrhYOh/T553O0dOlSBYNNkgz16dNHEycevsnfp6amJs2fP09Lly5RMBhULBZVIFCi8vIy9e8/QIMGDdaQIUNbrdoB2oIQBQCAIlRhlWR8LGhH1bekR1bG8eSpLhJSdXmlwnZMq2MN6l/aU5ZlyvNcuS5BCgAAAIDu7+uvv9I338xLaft//2837bTTLlvcd2VlpY4+erLuvntasi0ej+uFF57RCSecnPaa4447SitXrkge33zz7dpttz3aNe7++6ee/5//PKmBAwdlPP+Pf7wqpV7LmWf+VGef/TNJ0rx5X+nee6frzTdfl23bra494ICDVVVV1ap91qwX9cQTj+qTTz6S67qbnG9ZWbl23HGMxo07UOPHT1TPnr02eT7QghAFAIAi5DMtlZkBRdx4q8eyUVx+Q47nqj4aVu/SCtUnwgqYPvUOVMjnM5VIOMpCCRYAAAAAyGuvvfZKq7bDDz8qa/1PmnSk7rnnzpQal6+/PjtjiJJP7r13uu66a6ocx2nzNY2NDfr973+tjz76oM3XRCJhffDBe/rgg/dkWZaOOea4jkwXRYj1SwAAFKmMxeWzHKJIUtyx1RSPSJJWxxoVsmOSKDQPAAAAoDi8//67KceGYejAAw/OWv+DBm2l7bYbndI2d+5nrYrY55vp0+/QtGm3tStAicfjuvjin7crQAG2BCtRAAAoUpW+Eq1pvRBFQadzXmSHE/HmFTC+gFZE6zW0vFoB0yefz5Jtt/0FMwAAAAAUEsdxNH/+NyltQ4YMVUVFZVbHGTVqtL7++svksW3bmj//G40Zs1NWx8mWjz/+UJ9++nHyeOzY/TRhwmHaYYcx6tWrt4LBoJYtW6JZs/4ry/r+C3gPPHBPq63Rhg7dWkceeYx23nkXDRgwSOXl5bJtW+FwSMuXL9O3387Xhx++rw8+eE+RSKTLniO6B0IUAACKVJWvLG17Z6xEadEYi8gyTQVMn5ZGarV1WY0s05TPZ8q2N71/LQAAAAAUohUrlisej6W0jR69Q9bHGTVqe0kzU9oWLlyQtyHKJ598JEkqLS3V1Vdfp/32G5fyeGVlpQYMGKDdd98z2eZ5np5++omU8yZNOlK//vXv0xae79GjhwYMGKjddttDxx13omKxqF544Tn169e/E54RuitCFAAAilSFL31x+c4MUSSpPhJWdXml5ErLY/XaqrSPTNOQZRlyHAqkAAAAoJuwbRnBcK5nUTS8ynIpzYfo+WD16lWt2vr3H5D1cQYMGJhm7NVZHyebDMPQn/50o/baa582nb9ixfKU38+Kigr94he/SRugpFNSUqof/vDYDs0VxSs/7ywAAKDTVWWoiZLtwvIb8+SpLhJSdXmlwnZMa2IN6l/aU5ZlyvNcuS5BCgAAAApYIqHSJ16W75vvZLBtbZfxfJbskdsoesRBkt+f6+mkaGxsaNVWWZndrbya+6xq09j5ZNKkI9scoEhSbW1tyvGwYduqtDT9e1sgWygsDwBAkarMwXZeLRzPVX20+Vt59YmwauMhSZLPZ8owOn14AAAAoNP4n3xZ/i/nE6B0McN25P9yvkqfeTXXU2klFou1ast2PRQpfTCTbux8ctxxJ7TrfP9GAVlt7bpsTgdIixAFAIAiVWml384r6iZku53/hi/u2GqKNxf0WxNrVMhufnHv81mbugwAAADIX7Yta953uZ5FUfN9851k27mexmYZnfDtsUL7Qlr//gO03Xaj23XN4MGDU4rMr1ixXI8++u9sTw1IQYgCAECRyrSdlyQFnc5fjSJJ4URcETsuSVoRrVfctWUYkt9PkAIAAACgeygpaf0FtlAomPVxmppa95lu7HwxatT27b6moqJSe+yxd0rb3/52gy677FK99dYbisfj2ZoekERNFAAAilTlpkIUO6pe/ooumUdjLCLLMBWwfFoaqdXQshr5TFM+nynbdrtkDgAAAEBW+HxytttGvi/m53omRcseuU3eFZjv0aNnq7ZgMPshSrpgJt3Y+aJv374duu688y7Qxx9/qHj8+63K3nrrdb311usqKyvTmDE7a+ed/5/GjNlJY8bsorKy9FtZA22VX3cUAADQZUpMv3yGKdtrHVR0dnH5jdVHw6our5RcaUW0TluVVcs0DVmWIceh0DwAAAAKR+KHP5DnicLyXSylsHye6du3X6u2VatWZH2clStb99mvX+ux80VH68KMHDlK1113o6688ncKBptSHotEInr//Xf1/vvvSpJ8Pp+2335HHXTQDzR+/ERVV9ds8bxRfAhRAAAoUoZhqNJXqvpEuNVjXVFcfkOePNVFQqour1TYiWt1rF4DSnvJskx5nivXJUgBAABAgfD7FT1mgmTbMoKtX2ujc3iV5Xm3AqXFwIGDFAiUpKyc+OqrL7M+ztdft+5z2LBtsz5OtmxY26S99t57rB588D+677679PzzzygUCqU9z7ZtzZnzqebM+VR33PFPHXXUMTr33PM7HOCgOOXnnQUAAHSJfAlRJMnxXNVHw+pVWq6GREQB068+gQr5fKYSCUceOQoAAAAKic8nr1ePXM8CecDn82n48BH68svPk21LlixWKBTM6of5X3/9VcqxZVkaPnxk1vrPN9XVNbr00st0/vkX6b333tGHH36gTz/9SN9+u0CO03oVWDwe16OP/ltvv/2mbrnlDvXvPyAHs0YhIkQBAKCIVVnp66LkIkSRpLhjKxiPqipQpjWxRpWYPlX4SuTzWUok2AoBAAAAQGHaY4+9UkIU13X12muvatKkI7PS/4oVy1utRBkzZudOqweSTwXcS0pKNW7cQRo37iBJUjgc0ty5c/TRRx/ozTdf03fffZty/vLly3T55Zdp2rR7ZRhGDmaMQmPmegIAACB3KjIUl89ViCJJ4URcEbv5BfnyaJ1iri3DkPz+ji/1BgAAAIBcOvDAg1u1PfPMk1nr/9lnn5K30fL9Aw44KOP5fr8/5TiRSLRrvMbGhnad35XKyyu011776Lzzpuj++/+t226brpEjt0s556uvvtBbb72Roxmi0BCiAABQxKoyhChNTu5CFElqjEUUd2y5nqdlkVrZrivDkHw+XroAAAAAKDyjR++g4cNHpLR9+unH+vzzuVvcdygU1JNPPpbSFggEdOihh2e8ZuNtxJqaGts15vz537Tr/FzaaadddPPNd6i6ujql/d1338rRjFBo+CQCAIAiVplxJUosbXtXqo+G5XiuEq6jFdE6uZ5kmoYsi+XWAAAAAArPySefkXLseZ7+7//+JNu2t6jfqVNv1bp161LajjjiaPXu3TvjNT179ko5XrRoYbvGfO+9t9t1fq5VVVUlt/tqsXLlytxMBgWHEAUAgCKWKUQJ2dFWS8G7midPdZGQPHkKO3GtjtVLkizLlGkSpAAAAAAoLOPHH6rRo3dIaZs/f55uvfWmDvf5xhuzNXPmIyltlZWVOv30szd53YgRqQXn33//3TaP2dTUlNWtyLpKeXl5rqeAAkWIAgBAEcu0nZcrT2En96tRHM9VfTQsT54aEhHVxkOSmrf1ov4fAAAAgEJimqZ+85s/KBAoSWn/978f0h13/LPd/b377tu64orfynXdlPYLL/wf1dTUbPLaMWN2SjmeO/ezNm0t5nmerr/+WoVCoXbPNxvWrFnd7votLT799JOU4/79B2RhRigGhCgAABSxTCtRpPzY0kuS4o6tYLy5RsuaWKNC6+fl81FoHgAAAEBhGTFipH71q9+2ar///rt1ySXna9mypZvtIxKJ6Oab/6Jf/epixePxlMd++MNjdcQRP9xsH3vvva969OiZ0va//3uF1q5dm/GaaDSqa675g1599eXN9t9ZXnnlJR133FG67767tGpV27fjuvvuafr88zkpbfvuu3+2p4duypfrCQAAgNypsEoyPtZkR9RfPTM+3pXCibh8pqUyX0DLo3UaWl6jEtMnv99SIuHkenoAAAAA0GaTJh2pYDCom266MaX9gw/e0ymnHK8999xHBx98iIYPH6Hq6hr5/QGtW7dWy5cv0xtvzNZrr72ihoaGVv2OHz9Rv/jFb9o0h0AgoMmTj9c999yZbFuyZLHOOOMk/eQnp2ns2P3Ut28/JRJxrVy5Qu+++7ZmzvxPsvbKQQcdoldfnbUFvwsdt27dWk2dequmTr1V22+/g/bYY2+NGjVaW2+9jXr27KmysnLF4zGtWrVSn38+V88++6S+/PKLlD5Gjdpee+21T07mj8JDiAIAQBEzDVMVVolCabbuCubBdl4baoxFZBmmApZPyyK1GlpWI59pyuczZdvu5jsAAAAAgDxx/PEnqqamRn/60zWKRMLJ9kQiobfeel1vvfV6m/syDEOnnXaWzjnnPBnt2Pf4tNPO0quvvqyFC79NttXX1+nWW2/aZJ2W7bYbrd/97oqchSgb+vLLL1oFJJtTXV2tK6+8VpbF7gZoG7bzAgCgyGXa0itoR7t4JptXHw3L9hwlXEcronVyPck0DVkWBVIAAAAAFJaDDx6v++//t8aNO6jDfWy33Sjdeuud+ulPf96uAEVqXo3yt7/9Q8OGbdvma/bYYy/9/e+3qry8or1TzQqfz79F148Zs7Nuu+0uDR06LDsTQlFgJQoAAEWuyleqVbHWS8Gb7EgOZrNpnjzVR8KqLq9U2IlrdaxeA0p7ybJMeZ4r1/VyPUUAAAAAaLMBAwbouutu1Pz53+ipp2Zq9uxXtHbtmk1eU15eoX322VeTJh2psWP326Lx+/btp2nT7tWMGffpkUf+paamxrTnbbXVYJ1yyhk68sij2x3WZNPkycfr//2/3fT222/oww8/0BdfzFUw2LTJayzL0u6776UjjzxaBx98SE7nj8JkeJ7Hpw3AeuvWBYviA7hAoHm54rymFfIkrQk3yuVWgAwMw1CPHqkrFRobo+Kfj+7jiRUf6JOGRa3ad6warOO22jsHM9q8gOVTr9JyGTLUt6SH+gSavwWVSDjir2bhMQxDNTWVKW1r1wa5zwDIGu4zADbHdR2tXp1a0Ltfv8EyzbZt9+PzpW72wnaz2BLLli3Vd98t0MqVKxQOh+W6rsrLy1Vd3VdDhw7VttuO6JStqBzH0Zdffq6FC79VfX29PE/q06ePRo3aXiNGjMz6eNngeZ6WLVuqJUsWa9WqlQqHQ4rH4yorK1NVVQ8NHbq1hg8fqbKyslxPdYvl+31mS++jm2KahqqrKzd/YidhJQoAAEUu03ZeTXm4nVeLuGMrGI+qKlCmNbFGBUyfKn0l8vkoNA8AAACgsG211WBttdXgLh/XsiyNGbOzxozZucvH7ijDMDR48BANHjwk11NBN0ZNFAAAilylVTg1UTYUTsQVtuOSpBXROsVcW4Yh+f0UBwQAAAAAANlBiAIAQJHLWFjeye8QRZKaYhHFHVuu52lZpFa268owWi9zBgAAAAAA6Ag+YQAAoMhVZQhR4q6tuGt38Wzarz4alu05SriOlkfr5HrN+6VaFsUCAQAAAADAliFEAQCgyGVaiSLl/5ZekuTJU30kLE+eIk5cq2P1kiTLMmWaBCkAAAAAAKDjCFEAAChymwpR8rm4/IYcz1V9tDlIaUhEVBsPSWre1ssgRwEAAAAAAB1EiAIAQJELmD4FTF/axwphJUqLuGOrKd483zWxRgXtmCTJ56PQPAAAAAAA6BhCFAAAoEorQ3H5AgpRJCmSiCtsxyVJK6J1irm2DEPy+wlSAAAAAABA+xGiAACAjMXlC2U7rw01xSKKO7Zcz9OySK1s15VhNG/tBQAAAAAA0B58mgAAADLWRQk5hReiSFJ9NCTbc5RwHS2P1sn1JNM0ZFkUSAEAAAAAAG1HiAIAADKGKIW4EkWSPEn1kbBcz1PEiWtVrF6SZFmmTJMgBQAAAAAAtA0hCgAAyBiiFFpNlA05nquGWFiePDUmIqqNhyQ1b+tlkKMAAAAAAIA2IEQBAADdMkSRpLhjqyne/BzWxBoVtGOSJJ+PQvMAAAAAAGDzCFEAAEDGwvIhJybXc7t4NtkVScQVtuOSpBXROkUdW4Yh+f0EKQAAAAAAYNMIUQAAgCqt9CGKJIXWr94oZE2xiOKOLdfztDxaK9t1ZRjNW3sBAAAAAABkwicHAAAg43ZektTkFPaWXi3qoyHZnqOE62h5tE6uJ5mmIcuiQAoAAAAAAEiPEAUAAKjcCshU+jCh0OuitPAk1UfCcj1PESeuVbF6SZJlmTJNghQAAAAAANAaIQoAAJBhGKropsXlN+R4rhpiYXny1JiIqDYektS8rZdBjgIAAAAAADZCiAIAACRlLi7f1I1CFEmKO7aaYs3PaU2sUcH1NV98PgrNAwAAAACAVIQoAABAUua6KN1pJUqLiB1XONEcnqyI1inq2DIMye8nSAEAAAAAAN8jRAEAAJKkSqskbXt3DFEkqSkeVdyx5XqelkdrZbuuDKN5ay8AAAAAAACJEAUAAKxX6StL2x50umeIIkn10ZBsz1HCdbQ8WifXk0zTkGXxEgkAAAAAABCiAACA9Sp9xbUSRZI8SfWRsFzPU8SJa1W0XpJkWYZMk0rzAAAAAAAUO0IUAAAgadOF5T3P6+LZdB3Hc9UQC8uTp0Y7otp4SFLztl4GOQoAAAAAAEWNEAUAAEjKvJ2X47mKuYkunk3Xiju2mmLNK27WxBrVtH71jc9HoXkAAAAAAIqZL9cT2BKe52n16tUKhUKKRCJyHEelpaUqKytTdXW1ysvLcz1FAAAKRqbtvKTm1SilVqALZ9P1InZcPtNUub9EK6P18pfVqNTyye+3lEg4uZ4eAAAAAADIgYIJURobG/XBBx9ozpw5mjNnjhYuXKiVK1fKcTJ/qNGjRw8NHjxYo0eP1k477aRddtlF22+/fRfOGgCAwlFppd/OS2qui9K3pEcXziY3muJRWaapEsuv5dFaDS2rkc805fOZsm0319MDAAAAAABdLK9DlKVLl+qZZ57Rq6++qjlz5qQEJm3Zm72hoUENDQ364osv9Nhjj0mSqqurNW7cOB1yyCE66KCD5PPl9W8BAABdxmdaKjX9iqbZuqs7F5ffWEM0rD7llZIrLYvWakhZjUzTkGWZchyCFAAAAAAAikneJQjxeFxPP/20HnvsMX300UfJsGTj0MRoR6XXDa9du3atHn/8cT3++OPq2bOnjjjiCP34xz/WqFGjsvMEAAAoYFW+UkXjrUOUpiIKUTxJ9ZGw+pRVKuoktCpar4FlvWRZhjzPkOtu/oscAAAAAACge8ibEKW2tlYzZszQQw89pNraWknfhx+GYbQKTdqyEmVz19bX12vGjBmaMWOG9t13X51xxhkaN27clj4VAAAKVqWvVGviTa3ag07xhCiS5HiuGmIh9SqtUKMdUUncrz6BCvl8phIJR218GQIAAAAAAApczkOUYDCoadOm6f7771ckEkkbnGwcmPTs2VODBg1S//791a9fP5WWlqq0tFSWZSkajSoWi6mhoUErV67UqlWrtGLFipStwDYMVVr6fuutt/TWW29p55131iWXXKKxY8d29lMHACDvVPrS10Uppu28WsQdR02xqHqUlGlNrFF+01KVr1Q+H4XmAQAAAAAoFjkLURzH0f3336/bbrtNjY2NKeGJ9H24EQgEtMsuu2jvvffWTjvtpNGjR6t///7tGisWi2nevHn66quv9OGHH+rdd9/VihUrko9vOOann36qs846S/vss48uv/xyjRgxIhtPFwCAgkCIkipix+UzTZX7S7QiWi9/WY1KLZ/8foIUAAAAAACKQU5ClLffflt//OMftWDBgpTwxPM8eZ6nHj166OCDD9bEiRO13377qaSkZIvGKykp0U477aSddtpJxx9/vCRp4cKF+u9//6sXXnhBn3/+eXIOUnOY8vbbb+uYY47RKaecoilTpqiysnKL5gAAQCGoIkRppSkelWWaKrH8Wh6t1dCyGvlMUz6fKdum0DwAAAAAAN1ZTkKUM888MxmabBie7LXXXvrxj3+sQw89VIFAoFPnMGzYMJ177rk699xztXDhQv3rX//S448/rrq6umSYYtu27r33XlVVVemCCy7o1PkAAJAPKq30IUoxFZZPpyHaXGhekpZFazWkrEamaciyTDkOQQoAAACAzTvuuKO0cuX3u+PcfPPt2m23PXI4I3QHS5Ys1qJFC7V69SqFwyE5jqPKykpVVfVQTU1fjRo1WhUVLBDYEjmviWJZlo466iidc845Gj58eE7mMGzYMP3617/W//zP/+iJJ57Q9OnT9d133yUfb2sRewAACl2m7byibkK268hnWl08o/zgSapfH6REnYRWRes1sKyXLMuQ5xlyXV4rAAAAAMgP+++fPpj585//ov33P7Dd/a1YsVzHH//DlLbbb79bY8bstMnrpkw5V5988lGr9hNO+IkuvPB/2j0PqXUQ9bOfTdGpp57Rob42NmPG/br11ptS2v7+91u1xx57ZaV/qflz5uOOO0qrVq1Mto0YsZ3uuWdGu/p4++039cILz+mdd95SQ0PDJs83DENDh26tffbZVxMnHq7tthvd4fkXKzNXA1uWpZNOOkkvvfSSrrvuupwFKBvy+/067rjj9Oyzz+rvf/+7ttlmGwIUAEBRyRSiSFLQKe7VKI7nqiEWkidPjXZE6+JBSZLPZ2r9IlYAAAAAyFvTpt2eF591zpz5qNasWZ3rabQyceIkWVbqFweff/6ZrI7x0UcfpAQoknT44Ue2+frXX5+tE0/8kf7nfy7SCy88t9kARWoOXRYtWqh//WuGzjrrFJ1xxk/05puvt3vuxSwnIcrEiRP1zDPP6Morr9SAAQNyMYVNMgxDhx12mJ555hlde+216tevX66nBABAl8hUE0Uq7rooLeKOo6ZY8+/D2lhTcpszn684V+gAAAAAKBwLFnyjl156IdfTUDwe0913T8v1NFqprq7R3nuPTWmbPftlhcPhrI3x3HNPpxz7fD5NmDBps9eFwyH9/ve/0a9+dakWLVq4RXOYP3+efv3rSzVlyrlb1E8xycl2XjfddNPmT8oDpmkmC9EDAFAMSky/fIYp22td54MQpVnEjstnmir3l2hFtF7+shqVWj75/ZYSCSfX0wMAAACAjKZPn6qDDx4vny+3VR6eeeZJnXzy6dpqq8E5ncfGJk06Um+99UbyOBKJaPbslzVpUttXi2QSDoc1e/bLKW1jx+6n3r17b/K6urpaXXLJ+VqwYH6rx6qqemivvfbWPvvsp2HDtlGvXr3Vs2dPJRIJ1dbWatGi7/TJJx/rtdde0erVq1KuTbfVGtLL2XZeAAAg/xiGkXFLr2IvLr+hpnhUMSchz/O0PFor23VlGM1bewEAAABAvlq6dHGr1RC54DiOpk+/I9fTaGX//Q9Ujx49U9qy9fs1e/bLikQiKW2TJh21yWtCoaAuvvjnrQKUsrIynXnmT/XYY8/o6quv06RJR2r77XfUwIGDVF5eoZ49e2mbbbbVQQcdoksu+aUeffRpXX/937T99jtk5bkUG97pAwCAFJlClKAd6+KZ5LeGaFi26yjhOloWrZXrSaZpyLJ4eQUAAAAgf5SVlacc3333NMXj8ZzP46WXXtC33y7o8nlsit/v1/jxh6a0ffzxhynF7Dtq4zCmV6/e2nff/Td5zbXXXtHq92jgwEG6776HdPbZP1NZWVmbxjYMQ/vtN05Tp96ryy67vM3XoRnv8gEAQIpKK1OIEknbXqw8SfXRsFzPU9RJaFW0XpJkWYZMk0rzAAAAAPLDccedIMP4/j3K6tWr9Pjjj3b5PA4++BD169c/eey6rqZNu63L57E5hx+eujrE87wtLjC/cuUKffzxhyltEyYctslt1Z577mm98cZrKW2DBw/R1Kl3a8iQoR2ah2EY+uEPj9X06fdr8OAhHeqjGBGiAACAFJlXorCd18Ycz1VDLCRPnhrtiNbFg5Kat/UyyFEAAAAA5IHhw0fokENSV1c88MA9rbaW6mx+v1+nn352Stvrr7+qL7/8vEvnsTmjR++gbbcdntL2/PPPblGfzz//jDzPS2k7/PDMdVZisajuuOOfKW2maeqqq65V3759t2gukjR06DDdfvvdW9xPsSBEAQAAKaoyhSgO23mlE3ccNcWaA6a1saZk7Rifz8rltAAAAAAg6ZxzzpNlff8epbZ2nf7zn4e6fB5HHPHDVsXkp069tcvnsTkb1ypZunSx5sz5tMP9bRzCjBixnUaOHJXx/GeeeUpr165Jafvxj0/UmDE7d3gOG+vVq1fW+uruunWI0tTUpG+//VaffPKJvvzySy1btqxV4gcAAFJRWL79InZc4URzyLQiWq+ok5BhSH4/QQoAAACALbd48UIdf/zR2n//PZK/JkwYp7fffqNN1w8ePKTVNlUzZtyvpqamzphuRj6fT2ef/bOUtvfff7fVVle5NnHipJTQSVKHt/SaO/czLV26OKVtU6tQJOmpp2amHJumqRNO+EmHxseW63YhyqJFi/SnP/1JkyZN0l577aUjjjhCJ510kiZPnqzx48drjz320FlnnaWnnnpKtm3neroAAOSdTCFKyI7yZYRNaIpHFXMS8jxPy6K1sl1XhtG8tRcAAAAAdNSnn36i8847WytWLEu2VVdX65Zbpmrs2E0XJt/QGWeco0AgkDwOBps0Y8Z9WZ1rW4wfP7HVdln5thqlT59q7b33vilts2a9qHg83u6+Ni4o7/P5NGHCpIznL1++TN98My+lbc8999HAgYPaPTayo9u8q4/H47ruuus0adIk3X///fruu+/keV6rX6FQSG+//bYuu+wyHXHEEfr0044vwwIAoDvKFKK48hR22v+CsZg0RMOyXUe262pZtFauJ5mmIcvqNi+5AAAAAHShl19+SZdeer4aGxuSbVtv3VzPYvTo7dvVV//+A3T00T9KaXvkkYdVV1eblbm2lWmaOuecn6e0zZnzaZtX1XSVjVeLBINNev312e3qIx6Pa9asF1Paxo7dT7179854zfvvv9uqbf/9D2jXuMiubvGOPhaL6eyzz9Z9990n13UlSYZhyEhT0bWlzfM8LVq0SCeffLJeeeWVLp0vAAD5rMpKH6JIFJffHE9SfTQs1/MUdRJaFa2XJFmWIdOk0jwAAACAtnvooQd05ZW/TVn9sMsuu+q22+7q8KqE0047U2VlZcnjSCSi++7r+gLjBxxwkLbffoeUtmnTbsur3Q/22+8A9ezZM6Xt+eefznB2eq+/PlvBYOqWaRvXW9nYV1992aqtvYEZssuX6wlkwxVXXKH3339fUnNI4nmeLMvSsGHDNHToUFVWViqRSKi2tlbz5s1TfX198lzbtnXppZfqscce07bbbpvDZwEAQH6o8JVkfCzoRNVfPTM+DsnxXNVHQ+pdVqFGO6JA3KfqQKV8PlOJhKM8ek8AAACAThR3bdXFg7meRtHoHahUwOwWH3XKdV3ddNONevTRf6e0/+AHE/T731+dsiVXe/Xu3UfHHXei7r//++DkiSce1Yknnqz+/Qd0uN+OOPfc83XppVOSx/Pmfa1XXpmlH/xgfJfOIxO/36/x4yem/Dm89947Wrduraqra9rUx8ahS69evbXvvpvegm3hwm9Tjn0+n0aM2K6Ns0ZnKPg7y2effaYnnngiGZ5UVFTo3HPP1XHHHac+ffq0Ot/zPL3//vv6xz/+offee0+GYSgajeqGG27Q7bffnoNnAABAfjENUxVWiUJOrNVjFJdvm4TrqCkWUY+Scq2NNSlg+lTlK5XPZymRcHI9PQAAAHSiqJPQ/339tN6p+0Zxl3q8XSVg+rRP75G6dMThKrX8uZ5Oh8ViUV111e/1+uuvprSfeOIpuuCCi9PuvNNeP/nJaZo585HkCol4PK577rlTv/7177e47/bYc899tOuuu6cUlZ8+/XYdeODBrYq658qkSUelhCiO4+i//31eJ510ymavXbdurd57752UtgkTDpPPt+mP5FevXpVy3KtXb/n9hft3ujso+O28nnjiCUnN4UifPn3073//W+eee27aAEVqXn2y11576b777tMpp5ySXCL2+uuvq7a2a/f/AwAgX2Wqi8J2Xm0XsRMKJZqDqBXRekWdhAxD8vvz480AAAAAOsdf5j2t19Z9SYDSxeKurdfWfam/zX8211PpsLq6Ol144XkpAYppmrrkkl9qypRLshKgSFJVVZV+8pNTU9qeffYpLV26JCv9t8e5556fcrxo0UK98EL+/BmOHr29hg8fkdLW1i29/vvf5+U4qV+i27jOSjqNjY0px5WVlW0aD52n4EOUd99tLrRjGIZ+9atftWtLrt/+9rcaOnSopOZlcu+9916nzBEAgEJDiJIdwXhUMSchz/O0LFor23VlGJLPV/AvwQAAAJBG3LX11rpvcj2NolaoK4CWLFms8847U198MTfZVlJSov/93xt03HEnZn28448/Sb17f/8ldMdxdOedXb9Lz0477dJqe6u7756mRCLR5XPJZNKk1OBjwYL5mjfvq81e9/zzz6QcjxixnUaOHLXZ6+Lx1F0hKioIUXItZ+/gP/nkk1apWkesWvX98qaDDz64XddalqUDDjggbV8AABSzKkKUrGmIhmW7jmzX1bJorVxPMk1DlkWQAgAAAECaO/cz/fznZ2nZsqXJtl69eummm27TAQcc1CljlpWV6dRTz0xpe/nlF7VgwfxOGW9TfvrTn6esslmxYrmefHJml88jk4kTD2+1vdjGAcnGvvnmay1YkBqotmUVSjrZWoGEjsvZu/c33nhDhx12mB5//PEt6icejyd/Lisra/f1JSXfF8/Np4QTAIBcYiVK9niS6qNhuZ6nqJPQqmi9JMmyDJkmL4YBAAC6k4Dp077VI3M9jaK2T++RBVVgfvbsl3XRRT9XfX19sm2rrQbrttvu0pgxO3fq2Mcc8yP169c/eey6rqZNu7VTx0xn5MhROvjg1GLy9913l6LR/Hj/2bt3H+2zz74pbS+++IJsO/OKp+eeS93yy+fzacKESW0aLxAoSTkOBoNtnCk6S07vKLW1tfrtb3+rRx99VFdddZWGDx/e7j6qq6u1fPlySdLnn3+u3XbbrV3Xf/HFF8mfM9VRAQCg2FRa6UMUCst3jOO5qo+G1LusQo12RP64TzWBSvl8phIJR+tLtAEAAKAb+MV2R8p1C3dbqUK1YWH5QvH444/q1VdnyXXdZNsOO4zR9df/Tb179+708QOBgM4886e6/vr/Tba98cZr+uKLudphhzGdPv6GzjnnZ5o9++VkDZF169bq0Uf/pZNPPr3DfT7xxGNavnxZm88/+ODxGj16+7SPHX74UXrzzdeTx3V1tXrnnbe0//4HtDrXtm29+OILKW1jx+7X5j/THj16KBIJJ49DIUKUXMuLWPb999/XMccco7POOkvnn39+yuqQzdlhhx2SIcott9yiu+66q81LnN555x298847KX0BAIBNrERxCFE6KuE6aopF1KOkXOtiTSoxfarylcrns5RIOJvvAAAAAAWh1PLrt6OOVty1VRfnw8+u0jtQWVArUKTm7bM2tP32O+rmm29XaWn692OdYdKkI/Xgg/dp6dLFybY77rhVN93UtStShg4dpokTD9ezzz6VbHvwwft0zDE/6nBNkBdffF6ffPJRm8/feuthGUOUffcdp549e6qhoSHZ9vzzT6cNUd555y3V1dWmtE2adFSb59GvX3+tWrUyeVxfX6dEIiGfr+2fmSO7cnZn2XvvvfWvf/1La9askWEYSiQSmjp1qp5++mldccUVOvDAA9vUz/jx4/XSSy9Jag5FzjvvPF1zzTXq37//Jq974okndPXVVyePBw0apNGjR3f8CQEA0I1kClHirq24axfcm5N8EbETssyYKvwlWhGtl7+sWqWWX34/QQoAAEB3EzB96l/aK9fTQB7z+XwpW0LNm/eV3nhjtsaPn9ilczj77HN19dW/T7Z9+OF7+uijD7Tbbnt02Twk6ayzztWLLz6fLLnQ2Nighx9+UGef/bMunUc6fr9fEyYcpkce+Vey7c03X1djY4N69OiZcu7zz6du5dWrV2/tu+/+bR5r2LBtNWfOp8njRCKhBQu+0ZgxXbs6CN/LWU2UPffcU88995xOPvlkGYaRXD2ybNkynXfeebrooovaVOj9qKOO0jbbbJM8fu211zRhwgSdf/75uvvuuzVr1iy98847euONN/TEE0/o+uuv18SJE/Wb3/xG4XBYnufJMAxdeOGFnfZcAQAoNJkKy0vURdlSwXhUMSchz/O0LFor23VlGJLPR6F5AAAAoJj88pe/Uf/+A5LHjuPommv+oGeeebJL5zF+/EQNH55ay2fq1K6vjTJgwED98IfHprT9618zUurF5NLGq0kSiYReeum/KW2NjQ0p235J0oQJh8nna/sXEUeNav1F/6+++iLNmegqOf0aaWVlpf7whz/o2GOP1ZVXXqnPP/9chmHI8zy9+OKLeuONN3TRRRfptNNOk2mm/2DBsiz93//9n04//XSFw817xcXjcb3yyit65ZVX0l7jrd94vGWsSZMm6ZhjjumU5wgAQCHKtBJFag5R+gQ6tpwazRqiYfUpa/49XBat1ZCyapmmIcsy5TjuZq4GAAAA0B0MGjRY//znnbrkkp9r6dIlkpqLu//5z9cqGo3qRz/6cZfMwzAM/fSn5+k3v/lFsm3u3M/05puva7/9xnXJHFqcdtpZeuaZJ5NF5cPhkB544B5NmXJJu/v6xz+mZnVuo0aN1vDhI7Rgwfxk23PPPa3Jk49PHr/00n+TK2laHH74ke0aZ6+99mnV9sYbr+m447rm7wNay4uvPI4ZM0aPPPKI/vCHP6iy8vsPZcLhsK6//npNnjxZn3766Savnzp1qvr165dcWSI1hyUb/5KU8vjkyZN1/fXXd+KzAwCg8ARMX8Ytuyguv+U8SfXRkFzPVdRJaGW0eV9dyzJkmm2r7QYAAACg8A0YMED//Oc0bbPNtsk2z/P0t7/doBkz7uuyeey//4GtislPm3Zb8vPUrlJdXaMf/eiElLbHHvuP1q5d06XzyGTSpNRA5MsvP9eiRQuTx889l7qV14gR22nkyFHtGmPQoK00cuR2KW3vvfeOVq5c0b7JImvyIkSRmoONk08+Wc8995yOOOKIZBjieZ6++uornXTSSbriiivU2NiY9vrdd99dTz/9tM455xz17Nkz4//gLWHKnnvuqTvuuEN/+tOf5Pf7O/OpAQBQkCqtDMXlCVGywvE81UfD8uSpyY5o7fqioz6fKYMcBQAAACga1dU1uuWWqdpuu9QP22+99WZNn35Hl83j3HPPTzmeP3+eXn75xS4bv8XJJ5+W8kX7eDyme+65s8vnkc7EiYfLsqyUtpbgZNGihfryy89THmvvKpQWRx2Vuq2Z67p6+OEZHeoLWy5vQpQWNTU1+stf/qK7775bQ4cOldQcsLiuq//85z867LDD9Pjjj6e9tqqqSr/85S/12muvacaMGfrNb36js846S8cff7xOPvlknX/++frLX/6iV155Rffff3+bi9cDAFCMMm3pFXQIUbIl4TpqikUkSetiTWqym3/2+axNXQYAAACgm+nVq5duvvkOjRmzc0r73XdP0z//eVOXzGGPPfbS7rvvmdJ25523y3W7dsvhHj166sQTT0lpe/rpJ7Rs2dIunUc6vXv30dix+6W0/fe/z8l1XT3//DMp7T6fTxMmTOrQOEcccZSqq2tS2v7zn4c1d+6cDvWXTr7UmikEeReitBg7dqyeeuopTZkyRYFAINleW1ur3/72tzr11FO1YMGCtNcGAgHttttuOuOMM3TZZZfp2muv1R/+8AdddNFFOuKIIzRw4MCuehoAABSsTMXlWYmSXRE7oVAiJklaEW1QxEnIMCS/nyAFAAAAKCaVlZX661//od122yOl/aGH7tdf/nJ9l2yt9dOfpq5GWbJkcastqrrCj398knr16pU8tm1bd92V3RonHbVxgfnVq1fpgw/e0wsvPJvSPnbsfurdu3eHxigpKdV5501JaXMcR1dd9XutWbPlW5stXrxQ55131hb3UyzyNkSRmsOQKVOm6Mknn9R+++2XssXX+++/r2OOOUZ/+9vfFIvFcj1VAAC6nYwrUQhRsi4YjyrmJOR5npZHa2W7rgyjeWsvAAAAAMWjvLxc//d/f9c+++yb0j5z5n903XXXdPqqkDFjdmpVTP5f/+r6baTKyyt0yilnpLS9+OLzqq+v6/K5bGy//calBDyS9Ne/3qDVq1eltG0ctrTXpElHtvqzWLp0iX72s7O0ZMniDvXpeZ6efHKmzj77NC1d2rE+ilFBvDPfeuutNX36dP31r39V3759JTVv8ZVIJDR16lQdfvjhmj17do5nCQBA95IpRKGwfOdoiIZlu45s19WyaK1cz5NpGrKsgni5BgAAACBLSkpKdd11f9GBBx6c0v7ss0/p6qsvl23bnTr+T396vowNCjVGIuFOHS+TY489Xn379kseu66raDT370d9Pp/Gjz8spW3jQKJXr97ad9/9t3isK664Vttss21K2/Lly3T66T/R3XdPUyQSaVM/nufprbfe0LnnnqEbbvhjzv5MC1VBvSs//PDD9eyzz+qUU06RaZrJ/5mXLVum8847TxdddJFWrVq1mV4AAEBbsBKla3mS6qMhuZ6rqJPQymiDJMmyDJkmleYBAACAYuL3+3X11dfp0ENTa2rMmvWifv/7yxSPxztt7BEjRuoHP5jQaf23VUlJiU4//excTyOtzRWMnzDhMPl8vi0ep6KiUjfddJuGDx+R0h4OhzV9+h2aPPkIXXXV5Xruuaf11VdfauXKlQqHw2psbNDChd9p9uyXddNNf9Fxxx2lyy67pFXhe7TNlv9JdrHKykr9/ve/17HHHqsrr7xSc+fOTW7x9eKLL+qNN97QRRddpNNOO02mWVAZEQAAeSVTTZSQE5PruTIN/p3NNsfzVB8Nq3dZhZrsiNbGLdUEquTzmUokHHXBFsgAAAAA8oTP59Pvf3+1SkpK9dRTM5Ptb7zxmn7zm//RddfdqJKS9O/bttTZZ/9Mr746S47jdEr/bXXkkUfroYfuz4ui8hvabrvRGj58pBYs+Cbt45sLWdqjT59q3XbbdF1//f9q1qwXUx5ramrUSy+9oJdeeqHd/W68ZRwyK9hPP3bccUf95z//0RVXXKGqqqpkezgc1vXXX6/Jkyfr008/zeEMAQAobJVW5hfjIZt6ZJ0l4TpqijUvyV4XC6rJbv7Z56PQPAAAAFBsTNPUZZf9Tscff1JK+3vvvaNf/OIihcOhThl36NCtNWlS9oKAjvL5fDrrrHNzPY20MgUlI0Zsp5EjR2V1rPLyCv3xj9frhhv+qq23HrZFfe2440666abbdOONN2dnckWgYEMUqbkuyk9+8hM999xzOvLII1MKz3/11Vc66aSTdMUVV6ixsTHXUwUAoOBk2s5LkoIOW3p1poidUCjRHFStiDYo4iRkGJLfT5ACAAAAFBvDMHTxxb/QqaeemdL+yScf6ZJLLui0zz7POOOnCgQCndJ3e0yYcFiruiD54NBDD0+7ZVc2V6Fs7IADDtLDDz+qv/71Zk2YcJh69Oi52WtM09SwYdvqJz85Vffd9y/dccfd2n33PTttjt2R4Xn5uTFEPB5XQ0ODSkpK1KNHjzZd8/bbb+vqq6/WwoULk2GKYRjq3bu3LrvsMh1zzDGdO2kUvHXrgnLdvPxfIqsCgeYP4eY1rZAnaU24UW5+3gqQBwzDUI8eqR+mNzZGlaf/fCCLPM/T/349U65a/1mfNHhfbVc5MAezKi69SstVYvnlM01tXdZXPtOU63qybTfXU8sqwzBUU1OZ0rZ2bZD7DICs4T4DYHNc19Hq1anbBfXrN1im2bYvsfh8qd9T7m6v1wDkXrr7jOd5WrJksRYvXqhVq1YpHA7LdR1VVlaqqqqH+vbtp1GjRqu8vKLT57el99FNMU1D1dWVmz+xk+RNTRTXdfXcc8/p+eef14cffqi6urrkY5ZlabvtttPee++tk046SUOHDk3bx9ixY/XUU09p6tSpmjp1qmKx5m9w1tbW6re//a0effRRXXXVVRo+fHiXPKfOEAqFNHfuXC1atEj19fVyHEdlZWXq37+/tt56a40cOVJ+vz8r43zyySdauHChGhsb5fP5VFNTo1GjRmn77beXYVDgFgC6O8MwVOErTW4ntSGKy3eNhmhYfcqaXygujazT0PIamaYhyzLlOLwxBwAAAIBiZhiGhg7dWkOHbp3rqXRrebES5bPPPtOvfvUrLV68WJIyfhvIMAyZpqkTTzxRv/71rze5nGzx4sW65ppr9MYbbyRXpUiS3+/XWWedpfPPP18lJSXZfzKdwPM8zZo1Sw899JDeffddJRKJjOeWlJRol1120QEHHKATTzwxpV5MW3z99de67bbb9NJLL2Ucp1+/fjrhhBN01llnqby8vF395ztWogCtsRKluE1b+LKWR+tatR9cs4MOqNk+BzMqPpZhqE9ZpUzDVJWvTIPKeklq/tZRd/k3i2+IA+hs3GcAbA4rUQDku3y/z3TnlSg5r4ny6quv6uSTT9bixYuTL2ANw0iudGj5ueXYcRzNmDFDZ555puLxeMZ+hw4dqjvvvFN/+9vf1K9fv2RfiURCU6dO1eGHH67Zs2d38rPbcgsWLNAJJ5ygCy64QG+88cYmAxRJisVieu+993TjjTdqwYIFbR7H8zzdeuutmjx5sp577rlNjrN69WrdcsstOuKII/TZZ5+1eQwAQOGptNJ/4aCJlShdxvE81UfD8uSpyY5obbxJUvMLaBaGAgAAAADQuXIaoixcuFCXXnppygf2nufJ5/NpxIgR2m233bTjjjuqb9++8jwvpXD8Rx99pCuvvHKzY0yaNEnPPvusTj31VJmmmQxjli1bpvPOO08XXnihVq5c2WnPcUu89NJLmjx5sj799NNOH+uaa67RTTfdJNu223zN8uXLdeqpp+r999/vxJkBAHIpU3H5ECFKl0q4jhpjzduqrYsF1Zho/tnno9A8AAAAAACdKac1Uf76178qEokkg5ExY8boggsu0Lhx4+TzpU5t5cqVevTRRzV9+nRFIhF5nqcnnnhCp59+ukaPHr3JcSoqKnT55Zdr8uTJuvLKK/XZZ58lx3zppZf05ptv6sILL9Tpp58u08z54hxJ0osvvqiLL75YjuOktO+3334aP368dt11V1VXV6u8vFxNTU1asmSJvvjiC73++uub3fJrYw8++KBmzJiR0lZeXq4TTzxRkyZN0pAhQxQKhTRv3jw98MADevPNN5PnRaNRTZkyRY8//rgGDqTAMAB0N5lClCaHEKWrRe2EfGZMFf4SrYzWy2/6VGb55fdbSiSczXcAAAAAAADaLWc1URobGzV27Fi5bvPebcccc4z++Mc/bjbE+Oabb3Tqqaeqvr5ehmHo1FNP1e9+97t2jf3QQw/p73//uxoaGpJhimEYuvTSS3Xuued2+Dlly4IFCzR58mRFo99/QLXtttvqmmuu0Z577rnZ6xsaGvToo4/qoIMO0rbbbrvJc9euXavx48crEvm+aHD//v01ffp0jRw5Mu01d911l2644YaU/YMnTpyom2++ebNzy3fURAFaoyZKcXu/boGeXfVJq/Ze/nJdPHxS108I6lVarhLLL59pauuyvvKZplzXy7v9cNuDWgUAOhv3GQCbQ00UAPku3+8z1ETpBO+9915ylUX//v119dVXt2kVyMiRI3XxxRcnj9999912j33SSSfpueee01FHHZUMUCRtssZKV/E8T7///e9TApRRo0ZpxowZbQpQJKlnz54666yzNhugSNLtt9+eEqBYlqVbb701Y4AiSWeddZZOPfXUlLb//ve/+vzzz9s0PwBA4ajKsBIlaBOk5UpDNCzbdWS7rpZG1sn1PJmmIcvKj9W0AAAAAAB0Jzl7t71hHZIDDzxQgUCgzddOmDBBUnPg0NF6Jn369NH//d//6Z577tGwYcPy5oOghx56SB999FHyuKKiQtOmTVPv3r2zPtbatWv18MMPp7SdfPLJGjNmzGavvfTSS9WvX7/kcUthegBA95JpOy/bcxVz2751JLLHk1QfDcn1XMVcWyui9ZIkyzJkmlSaBwAAAAAgm3IWooTD4eTPvXr1ate1PXr0SNtPR+yzzz568skndckll6isrGyL+tpSrutq2rRpKW0XXnih+vfv3ynjzZo1K6V2imEYOu2009p0bXl5uX70ox+ltL322msKhUJZnSMAILcyhShS82oU5IbjeaqPhuXJU9COam28SVLz8m6DHAUAAAAAgKzJWYiy4cqK7777rl3XLl68WFLzh/49e/bc4rn4/X6dd955Ovvss7e4ry3x+uuva/ny5cnj8vJynXDCCZ023qxZs1KOd999dw0ZMqTN10+ePDnlOB6P64033sjK3AAA+aHSyhyiNBGi5FTCddQYa96Sc10sqMZE888+35bvNwsAAAAAAJrlLETZZpttJDVvAzV79mwtWbKkzdc+8MADyZ/bUvejUDzyyCMpxz/4wQ9UXl7eKWPF43G9/fbbKW177bVXu/oYOnSoBgwYkNL26quvbunUAAB5xGdaKjX9aR9jJUruRe2EQomYJGlltF4RJyHDkPx+ghQAAAAAALIhZyHKrrvuqh49esgwDMViMZ1zzjlasGDBJq/xPE9Tp05NqeNxwAEHdPZUu4TneXrrrbdS2saOHdtp4y1cuFDxeDylbbfddmt3PxtfM2/evC2aFwAg/2QsLu8QouSDYDyqmJOQJ2l5tFa268owmrf2AgAAAAAAW8aXq4Ety9Lpp5+uW265RYZhaNGiRTr66KM1ceJEHXTQQRo+fLiqqqoUj8e1evVqzZkzR0888YS+/fbbZB9VVVX68Y9/nKunkFXffvutgsFgStuoUaNSjhsbG/Xee+/pu+++UygUUo8ePdSnTx9tv/32rc5ty3gbGz58eLvnvfE17d2aDQCQ/yp9pVqzvubGhtjOK380RMPqU1YpSVoaWaeh5TUyTUOWZcpx3BzPDgAAAACAwpWzEEWSzj77bL300kv68ssvZRiGbNvWs88+q2effTbt+Z7nSWquhSJJv/vd71KKzBeyOXPmtGobMWKEJGnVqlW68cYb9dxzz6UUgt9Q3759ddxxx+nss89WVVXVZsfbeNWPZVkdKmC/8XZeoVBIq1at6lBfAID8lKm4fMiOdfFMkIknqT4aUp+ySsVcWyui9dqqrLcsy5DnGXJdL9dTBAAAAACgIOU0RCktLdW0adN0zjnn6KuvvkqGIy1hycYMw5DneTJNU7/85S91zDHHdOFsO9fGoUYgEFBZWZmef/55XXHFFWpoaNjk9WvWrNFtt92mhx56SDfeeKPGjRu3yfNXr16dcty3b19ZVvv3Tx80aFCrtkIOUQzD0Pq/ht1ay/9rzU/Wa37eOZ0R8lm6vxuGpKL4nwWSMocoTXb0+/sJcs6V1BCLqHdZhYJOVGvjQfUtqZLPZ8m2HWV4eZUX0v01am7j7xeA7OA+A2DzuB8AQPYZWfncINefPeQ0RJGkmpoa/fvf/9att96qGTNmqLGxMeO5nudp11131S9/+UvtvvvuXTjLzrdxSFJRUaFZs2bp0ksvleu2fRuO+vp6nXfeefrjH/+4yZApHA6nHFdWVrZrvpu6LhQKdaivfNCnT0Wup9ClKpyAXHnqYZXKVR5/uoa8U9Uj/Yfq6J76hqqk2tbtYS+mHvxdyDuu6arSX6qIYnJLKtSrpDD/bauu7thrEwBoK+4zADZk27Zqa631Pzd/DmNZpiyrY3XmqE8HoLPl233GcTy1BNItc6uurpDPl/MIYovlxTMIBAK65JJLdO655+qtt97Shx9+qBUrVqipqUl+v1+9e/fW6NGjtc8++7S79keh2Dg8isVi+sUvfpEMUEpKSvSTn/xEEydO1DbbbKOysjKtXr1a77zzju655x7Nnz8/ea1t2/rDH/6gkSNHascdd0w73sYhSklJSYfmne66jfsGABS2Kn9Z2vamRKSLZ4K2iLu2InZcZb6AlofrFDB9Kvd37N95AAAAAACKXV6EKC3Ky8s1fvx4jR8/PtdT6XJNTakFezcMIrbaaitNnz5d22yzTco5Q4YM0ZAhQ3Tsscfq2muv1cMPP5x8LB6P67LLLtPTTz+ddrlTJJL6wVdHQ5TS0tbfQCZEAYDupUeGECVsx2W7jnxm+7eDROeKOHFZhqmA5dPi0DptW9VPASuvXvYBAADklXSfnWTabh4A0Jrntd5NKdfbcGVLfq35KWKZ/mEuKyvTXXfd1SpA2ZDP59PVV1+tCRMmpLTPnz9fs2bNyuo8AQDFp0cgfYgiSU2JaBfOBO0RtKNyXFe252hxaK2cNC9oAQAA0Mw0v/+IrOUzP9d1cjQbACg8LTsqbZibbHhvLWR8JTFPlJeXp20/99xzNWzYsDb1ceWVV+rVV19VIpFItv3rX/9Ku7KnrCz1A7FYLNb2yW4gGm394Vmm51IIamtDct3u/02TQKD5W+OhcFyePDWGo3L5hg0yMNS6BkpTY5QqOsXEyfzNkRX19bLKWImSr4JGTH3KKhU24oqHV2hweR9Jzft859O/d4bRujbBunVB8U8TgGzhPgOgLVzXkOvayeNwOCzT9Lfp2o1rE7TUVQGAbMn3+0zz7kSePE+ybUem6dO6ddmpnW2aRk5rWROi5Il0wYNlWTrhhBPa3Effvn116KGH6plnnkm2ffTRR3IcR5aV+gHXxuN1NERJd10hhyie5xXFct3kc1z/32J53uigdMvaxdL2YlJi+GQZZtqVDE2JiLxS/i7kK8fzVB8JqXdZhYJ2VGuijaopqZJlGXLdfLr3p9s+g/sMgGziPgNg80pKShWJBJPH0WhYlZU9czgjACgc0ejGNbhLs/ZaK9cv2brHeppuIF3wMHLkSFVXV7ern3322SflOBgMphSdzzReMBhsdU5bpLuuoiJ3qSAAIPsMw1CVr3UNLEkK2h0L4dF1Eq6jxlhzLbR18aAaE80/b/wtJgAAgGJXWpr6WYltxxWLRTKcDQBoEYtFZNvxlLbS0u7zGTHvnvPEgAEDWrWNHDmy3f2ku2bdunWt2vr165dyvGbNGjlO+/f6XLFixWb7BgAUvkorfYjSZFMTpRBE7YRCiebAa2W0XhEnIcOQ/H62YgMAAGgRCJTKMFJfH9XVrSFIAYBNiMUiqqtbk9JmmpYCgZIczSj7crKd1+uvv65x48blYuh2a2ho0OLFi7XTTjt16jjDhw9v1dazZ/uXjPbo0aNVW319fau2bbfdNuXYcRytWrVKgwYNatd4G4coFRUVaQMhAEBhq8y0EsUhRCkUwXhUlmmq1PJrWbRWW5fVyG9a8vnMvNtLFwAAIBcMw1BZWYXC4cYNWj3V1a2WzxdQaWm5SkqagxbDMFJ2Pnac1L1mWgosA0C25MN9pmU7VM9zFItFFY2GW61AkZpXoRhptocvVDkJUX76059qv/32069+9SuNHj06F1PYrHg8rnvvvVfTpk3TaaedlpMQJVt7xqX7C5tuvAULFrQ7RPn2229TjrfZZpv2TQ4AUBAyhiisRCkojdGwfGXNhZWXRWo1tLxGpmnIskw5Dm/0AQAAqqp6yXUdRaOpxZBtO65gMK7Mu6Fv/NkLNZcAZFth3GdKSytUVdUr19PIqpxt5/XWW29p8uTJmjJliubMmZOrabQSDoc1ffp0HXLIIfrrX/+qpqamLhl36623blWnpKGhod39pLumd+/erdqGDRumQCCQ0vbxxx+3e7yPPvoo5Xi77bZrdx8AgPxHiNI9eJLqoiG5nquYa2tFtF6SZFmGTLP7fEsIAACgowzDUM+e1d1qL38A6CqlpRXq2bO6W61CkXJcE8V1Xc2aNUs//vGPdcYZZ+jFF1/sUF2ObFi0aJFuuOEGHXzwwbrxxhu1Zs2arK0EaQvLslptcTZv3rx295PumnQ1SgKBgMaOHZvS9t5777VrrCVLlrTazuuggw5qVx8AgMKQubA8IUqhcT1P9dGwPHkK2lGtjTV/YcTnM7vdC10AAICOaAlSyst7yDTbVkPO5zNTfgFAtuXzfcY0LZWX9+iWAYqUo+28jjjiCD3zzDPJ31DP8/Tuu+/q3XffVXV1tY499lhNnDhRY8aM6dR51NfX66WXXtJTTz2VDBBaghPDMOR5nvr27at99tmnU+fRYvz48XrhhReSx/Pnz9eaNWvUt2/fNvfx9ttvpxxXV1e3qn/S4pBDDtHs2bOTxx988IGWLFmiIUOGtGmsmTNnphwHAgHtv//+bZ4rAKBwbGoliud53fJFUneWcB01xiLqWVKudfGg/KZPPf1l8vlMJRK5+UILAABAPjEMQz169FZVVS/F4zFFoyHFYhG5Lq+VAEBqDk5KSspVWlquQKCkW38ukJMQ5S9/+YtOOOEEXXPNNZo/f35KmLJ27VrdeeeduvPOOzVo0CAddNBB2muvvbTnnnuqT58+WzSu67qaM2eO3n33Xb311lv64IMPkitfNg5PLMvSqaeeqgsvvLDVNlud5eCDD1Z5ebnC4XByvg8//LAuvPDCNl2/atUqzZo1K6Vt49UmGzrkkEN07bXXKpFISGr+PXjggQf029/+drNjRSIRPfLIIyltBxxwgCoqWO4KAN1RphDFlaeIE1e5r6SLZ4QtFbUT8plRVfhLtSpar4DpU5nll99vEaQAAACsZxiGSkpKVVLS/Hq4uaCyp9RaBIaqq1M/D1m3LqR8rVcAoBDl033GkGEY3To02VhOQhRJ2muvvfTEE0/okUce0W233aaVK1emhCmStGzZMs2YMUMzZsyQJA0cOFCjRo3Sdtttp0GDBql///6qqalRWVmZSktLZVmWYrGYotGoGhoatHLlSq1cuVLfffed5s2bpwULFigWiyXnsGFw0hKeSNKkSZN08cUXa9iwYV34OyJVVVXpzDPP1D//+c9k25133qnDDz88bSH4DXmepyuvvDIZiLQ49dRTM15TU1OjE044QQ888ECy7YEHHtDRRx+tHXbYYZPj/f3vf9eqVauSx4Zh6Pzzz9/kNQCAwlVlpQ9RJKnJjhKiFKhgPCbLtFRq+bUsWquty2rkNy35fKZsm0LzAAAAG0v3waFhGPL5Uj9isyyrS7eJB9C9cZ/JLcPLg9/peDyuGTNm6J577kkJUyS1+ovQ0YRrU/14nifTNHXIIYfoggsu0OjRozs0RjYEg0FNmDBBtbW1ybYBAwbozjvv1MiRI9NeE4/HdeWVV+qxxx5LaR83bpzuvPPOTY63Zs0aTZgwQZFIJNk2cOBA3XnnnRoxYkTaa+655x79+c9/Tvk9nThxom6++ebNPr98t25dUK6b8/8lOl0g0Lyn67ymFfIkrQk3ys39rQB5qnkZe+oH6I2NUf6hLjKu5+rar2emfeyUIftreEX/Lp4RssWQ1KesUj7TUonp09DyGpmGIcfx5DhdE6QYhqGamsqUtrVrg9xnAGQN9xkAnYl7DIDOVuz3GdM0VF1dufkTO0lehCgtbNvWs88+q/vuu09z586V1Do06eh0M/VTUVGhY489VqeddpqGDh3aob6z7cUXX9SUKVNS2vx+v44//ngddthh2nbbbVVaWqrVq1frnXfe0X333aeFCxemnN+3b1/NnDmzTfVUHnjgAV177bUpbRUVFTrxxBN1+OGHa/DgwQqHw/r666/1wAMP6I033kg5t1evXpo5c6YGDRrUsSecRwhRgNYIUdDixm+eVsiJtWo/ZuAe2qXn1jmYEbLFNAxVl1XKNExV+kq1VVlvSZJtu13y72KxvyEA0Pm4zwDoTNxjAHS2Yr/PEKJk8M033+ixxx7T888/rxUrViTbs7ESxe/3a+zYsfrhD3+oCRMmqKQk/7YgmT59um644YYOXdu7d29NnTpVO++8c5uvueqqq/TQQw+1e6zS0lJNmzZNe+21V7uvzUeEKEBrhChocft3L2lVrKFV+yF9x2j/6lE5mBGyyW9a6l1WIUOG+gQq1LekhyQpkXA7/f/3Yn9DAKDzcZ8B0Jm4xwDobMV+n8l1iJKzmiibM3LkSP3617/Wr3/9a3399dd67bXX9P7772vOnDmqq6trV18+n0/bbbeddtllF+23337ad999u6xYfEedffbZqqmp0dVXX61QKNTm63bccUfddNNNGjJkSLvGu/LKK1VTU6Nbb71VjtO2YrIDBw7UTTfdpF122aVdYwEAClOlrzRtiBK0ozmYDbIt4TpqjEXUs6RctfGQAqZfPf1l8vlMCs0DAAAAAIpW3q5E2ZTly5dr4cKFWrZsmVauXKlgMKhIJCLXdVVaWqqysjJVV1dr0KBBGjJkiIYPH65AIJDraXfImjVrNG3aND3++ONqaGj9wZUkmaapnXbaSaeffroOP/zwDq/WkaSvvvpKt912m2bNmtWqSH2Lvn376sQTT9SZZ56pioqKDo+Vj1iJArTGShS0eGLFB/qkYVGr9h2rBuu4rfbOwYzQGSoDJarwl8qQNKS8RmWWX56nTg1Siv1bVQA6H/cZAJ2JewyAzlbs95lcr0QpyBClGDmOo7lz5+qbb75RbW2tPM9T79691bdvX+26667q1atXVscLBoP6+OOPtWjRIjU1NcmyLFVXV2v06NHaYYcdtiioyWeEKEBrhCho8dLquXqz9utW7VuX1eiMrQ/MwYzQWXqWlqvU8ssyTW1dViO/acl1Pdl25xSaL/Y3BAA6H/cZAJ2JewyAzlbs95lchyh5u50XUlmWpV122aXLts6qrKzUuHHjNG7cuC4ZDwCQ/6p8pWnbgw7beXU3DdGwfGXNL1CXRWo1tLxGpmnIskw5TucEKQAAAAAA5CMz1xMAAACFoTJDiNJETZRuqS4akuu5irm2VkTr5XmSZRkyze65GhUAAAAAgHQIUQAAQJtkClHirq24a3fxbNDZXM9TfTQsT56CdlRr442SJJ/P7LbbegIAAAAAsDFCFAAA0CaZtvOSpCCrUbqlhOuoMRaRJNXGQ2pINP/s8/ESEgAAAABQHHgHDAAA2iTTShSJEKU7i9oJhRLNf76rovWK2HEZhuT3WzmeGQAAAAAAnY8QBQAAtEnA9Clg+tI+RojSvQXjMUXthDxJy2J1SriODIMVKQAAAACA7o93vgAAoM0qrZK07RSX7/4aYmElXEeO62pZpFau58k0DVkWLycBAAAAAN0X73oBAECbVfrK0rYHHUKUYlAfDcn1XMVcWyuidfI8ybIMmSaF5gEAAAAA3RMhCgAAaLNMxeXZzqs4uJ6numhYnjwF7ZjWxBslNW/rZRgEKQAAAACA7ocQBQAAtFmFL/12XoQoxcN2HTXGIpKkunhIDYnmn6mPAgAAAADojni3CwAA2qwq03ZehChFJWonFIw3/5mvitYrYsdlGJLfb+V4ZgAAAAAAZBchCgAAaDMKy6NFKBFT1E7Ik7QsWqe468gwWJECAAAAAOheeJcLAADarDJDTZSQE5PruV08G+RaQyyshOvI8Vwtj9TK9TyZpiHL4iUmAAAAAKB74B0uAABos0zbeUnNQQqKT300JMdzFXNtrYjWyfMkyzJkmhSaBwAAAAAUPkIUAADQZpUZCstL1EUpVq7nqT4alidPQTumNfFGSc3behkGQQoAAAAAoLARogAAgDYrt0pkKP0H44Qoxct2HTXGIpKkunhIDYnmn6mPAgAAAAAodLyzBQAAbWYYRsbVKBSXL25RO6FgvPnvwKpovSJ2XIYh+f1WjmcGAAAAAEDHEaIAAIB2yVRcnpUoCCViitoJeZKWResUdx0ZBitSAAAAAACFi3e0AACgXaosQhRk1hALK+E6cjxXyyO1cj1PpmnIsnjZCQAAAAAoPLybBQAA7VLBShRsRn00JMdzFXNtrYjWyfMkyzJkmhSaBwAAAAAUFkIUAADQLlWZQhQn1sUzQb5yPU/10bA8eQraMa2JN0pq3tbLMAhSAAAAAACFw5frCWyJRCKhTz/9VF988YXq6upUX1+vaDQqwzD0pz/9KdfTAwCgW8pUE6XJjnTxTJDPbNdRQzSiXqXlqouHFDB96uUvl89nKpFwcj09AAAAAADapCBDlDlz5mjatGl67bXXFIulfuvV87zNhij33HOPli5dmjw+8MADNW7cuE6bLwAA3cmmCsu3/DsMSFLMSSgYj6oyUKrV0QaVGD6V+QLy+y2CFAAAAABAQSioECUUCunyyy/XCy+8IKk5MOmIsrIyPfDAA8kPeebMmUOIAgBAG2XazsteXwOj1PJ38YyQz0KJmHymqVJfQMuidRpaXqOAacnnM2Xbbq6nBwAAAADAJhVMTZTFixfrRz/6kV544QV5npf8puvGv9ri2GOPVU1NjaTmIOazzz7Tt99+25nTBwCg26i00ocokhRkSy+k0RCLKOE6cjxXyyO1cj1PpmnIsgrmpSgAAAAAoEgVxDvXpqYm/exnP9PChQtTwpOWMKWyslKWZbW5v0AgoCOOOCJlJcusWbM6Y+oAAHQ7mbbzkqSgTXF5pFcfDclZv1ppebROnidZliHTZPs3AAAAAED+KogQ5fLLL9d3332XEp5su+22uuGGG/Tuu+/q/fff14gRI9rV52GHHSZJydUrb7/9dtbnDQBAd+QzLZWa6bfsanKiXTwbFArX81QfDcuTp5Ad05p4oyTJ5zOpowMAAAAAyFt5XxPls88+03//+99keGIYhiZPnqxrrrlGPl/Hp7/rrruqV69eamhokOd5+vjjjymGCwBAG1X6ShWNJ1q1s50XNsV2HTVEI+pVWq66eEgB06de/nL5fAXxvR4AAAAAQBHK+3esd955Z/JnwzC0//77609/+tMWBSgtdtxxx+SWXtFoVEuWLNniPgEAKAaZisuznRc2J+YkFIw3r1haHW1Q2I6L77AAAAAAAPJVXocojuPozTffTK5CsSxLV1xxRdb633HHHVOOv/vuu6z1DQBAd5apLkrQZjsvbF4oEVPUjsuTtDxap7jj5HpKAAAAAACkldchypw5cxQKhSQ1r0LZZ599NGTIkKz1369fv5Tj1atXZ61vAAC6s0whShPbeaGNGmIRJVxbjudqWXSdHJcgBQAAAACQf/I6RFm2bFnK8V577ZXV/quqqlKOWwIbAACwaZUW23lhy9VHw3I8VzHX1tJQbXKbVQAAAAAA8kVehyi1tbWSlHxD3b9//6z2X1ra/AFQSzH5aJQtSAAAaAu280I2uJ6n+mjzl1ia7KhWROqTj/n9FrVSAAAAAAA5l9chSiSSuiVIS+iRLY2NjZK+D2kqKyuz2j8AAN1VpsLyETcum22Z0A6266ohGpYk1caC+q5pteKOLcNoDlIsK69frgIAAAAAurm8flfaq1evlOOW0CNbNq6BsvF4AAAgvUwrUSQp5LClF9on5tgKJaLyPE8hO6b5jStVn2gOVizLYFUKAAAAACBn8jpE6dOnj6Tvt9taunRpVvv/+OOPU46rq6uz2j8AAN3VpkKUJrb0QgfEXFsNibBs15ErTyuj9VoWqZXtuhusSiFJAQAAAAB0rbwOUYYMGZJyvHHosSWCwaA+/PDDZEBjmqbGjBmTtf4BAOjOSk2/LCP9ywjqoqCjXM9TYyKisN28milox7QwvEZNdvMWr5Zlyu+3cjlFAAAAAECRyesQZdSoUaqpqZHUXLfkww8/1MqVK7PS94wZM1JqrowaNUpVVVVZ6RsAgO7OMAxVWhSXR+eIOgmtCweVcB05nqvlkXqtiNTLWb8qJRCwZJqsSgEAAAAAdL68DlEkad99900WfnddV//4xz+2uM8FCxbo9ttvl2EY8jxPhmHooIMO2uJ+AQAoJpmKyxOiIBscz1VtJKhgPCpPnhrtiBZG1ii0fpWKz2fK58v7l7IAAAAAgAKX9+88TzvtNElKBh6PPvqonn322Q73t3TpUp1//vkKh8PJtpKSEp1yyilbPFcAAIpJprooTQ4hCrInlIipNhKS7TqyXVdLI7VaGa2X63kyTYNVKQAAAACATpX3IcqYMWM0YcKE5IoRz/N02WWX6e67706uUGkLx3H02GOP6Uc/+pEWL16csgrluOOOSxaxBwAAbZMpRGElCrLNdh2tiwQVSjSvQmlIRLQwvEZhOy6JVSkAAAAAgM7jy/UE2uK3v/2tPvroI9XW1sowDNm2rRtuuEEPP/ywfvSjH2nXXXdVIpFIuWbhwoWqr6/X8uXL9f777+vVV1/VypUrk8GJ1Ly6ZdiwYbr00ktz8bQAAChohCjoasF4VDE7oZ6l5ZIrLYmsU+9AhWoCPWSahvx+S47jynXb/kUbAAAAAAA2pSBClEGDBumf//ynTj/9dMXj8eQqkkWLFulvf/tb8ryWlSme52nSpEkpfbQ81hKgeJ6n8vJy3XLLLaqoqOiiZwIAQPdBiIJcSLiO1oWbVFVSpjJfQHXxkEJ2TANKe6nM8svnM+W6nmzbzfVUAQAAAADdQMHse/D//t//09SpU1VdXZ1cTdISprT82tCG7Rue3/JYv379dN9992nEiBG5eDoAABS8TRWWb8+Wm0B7eZIaYxHVRUNyPVdx19bi8FqtjTfJ85RcldLy2g8AAAAAgI4qmBBFkvbee289/vjjGjduXKtwZHO/pO+Dlf3220+PPPKIxowZk+NnBABA4aq00ocorjxFnHgXzwbFKO7YWhsOKrq+Nsq6WFCLwmsUc20ZhuT3m7Ksgnq5CwAAAADIMwX3rrKmpkbTpk3Tv//9bx166KHy+/2tVp2k+2VZlvbdd1/df//9mj59uvr165frpwIAQEHLtJ2XJDWxpRe6iCdPDbGI6qNhuZ6nmGtrUWiNauMheZ5kWS2rUnI9UwAAAABAISqImijp7Lzzzrr55psVj8f16aef6qOPPtLKlStVX1+vxsZGlZSUqHfv3qqpqdHOO++svffeW5WVlbmeNgAA3UaFryTjY0Enqv7q2YWzQbGLOQmti9jqUVKmEsuvNbFGBe2oBpT2UsC01hed9+Q41EoBAAAAALRdwYYoLQKBgPbcc0/tueeeuZ4KAABFxTJMlVslCjuxVo9RXB654Hqe6qNhlfn8qiopU8SJa1F4jfoGeqhXoFyWZcg0Ldm2I8r2AAAAAADaouC28wIAAPljU8XlgVyJ2AmtCzcp7thyPU+rYg1aGqmV7brra6VY1EoBAAAAALQJ7x4BAECHVWbY0ouaKMg1x/NUFw2pKR6RJ08hO6aF4TVqTEQkUSsFAAAAANA2eb+d1/vvv5/8uby8XDvuuGPW+v78888VDoeTx2wJBgBA+1RaZWnbWYmCfBFOxBWzbfUsLZNMn1ZE69VkR9W/pKd8pim/35Jtu3Jd9vcCAAAAALSW9yHKqaeeKmP9VwRHjx6tmTNnZq3vyy+/XF9//bUkyTAMffHFF1nrGwCAYlDJdl4oAI7nqjYSUoW/RBWBEgXtqCJuXANKeqnSVyKfz5TrSrbt5HqqAAAAAIA8UxDbeXmeJ6+Tqn+29N1Z/QMA0J1l2s4r6BCiIP+EEjHVRoKyXUeO62pZpFYrovVyPU+mKQUClkyT/b0AAAAAAN8riBDFMIzkapTO6BsAAHRMlY/tvFBYbNfVukhQoURMktSYiGhheI1CdvOxz2fK5yuIl8gAAAAAgC5QMO8QWSkCAED+ybQSJebaSrh2F88GaLtgPKraSFCO5yrhOloaqdWqaOP6VSnNRedZlQIAAAAAKJgQpTNsGMyYZlH/VgAA0CGZaqJIUhOrUZDnEq6jdeEmhe24JKk+EdLC8BpFnIQMg1UpAAAAAIAiD1EikUjy59LSzB8CAQCA9DJt5yWxpRcKgyepKRZRXTSUXJWyOLxWa2NNcj0lV6WwBSwAAAAAFKeiDVFs29aKFSuSx5WVlTmcDQAAhSlg+uQ3rLSPEaKgkMQdW+vCTYquX5WyLh7U4vAaRR1bhiH5/axKAQAAAIBiVLTvBGfPnq1EIiGpubj8kCFDcjwjAAAKU1WGLb2CDiEKCosnqSEWUX00JNdzFXNtLQ6vUW08JI9VKQAAAABQlIouRGlqatLTTz+tK6+8UoZhJOuijBo1KsczAwCgMGWqi0JNFBSqmGNrXSSoqJOQJ2lNrFGLI2sVd79flWJZRfcyGgAAAACKki/XEzjkkEPafO78+fPbdf6GXNdVOBxWY2OjpOai8ht+i/Cggw7qUL8AABS7TCEK23mhkLmep4ZoWDGfXz1KyhR1EloYXqu+gSr1DlTIsgyZpiXbdrT+OzkAAAAAgG4o5yHKsmXLUlaEpNPyWCKR0LJly7IybkuAYhiGhg4dqv333z8r/QIAUGwIUdCdRe2E4o6tniXlClg+rY41KujENKCkp/ymJb/fkuN4chw311MFAAAAAHSCnIcoLTLtLb1huJLt/ac9z1NZWZluuOEG9rYGAKCDCFHQ3bmep7poSGX+gKoCpQrbMS1y1qpvSQ/19JexKgUAAAAAurG82MzZ87yMv9p6Xnt/GYahAw88UI888oh22WWXHD1zAAAKX5VFTRQUh0girnXhoBKuLcdztTJar2WROtmuu75WiiXL4os5AAAAANCd5HwlyrHHHrvJx2fOnJnc7qtnz576wQ9+0KFxLMtSRUWFevTooVGjRmmXXXZR3759O9QXAAD4XqaVKGEnJtfzZLLaE92I47mqjYRU4S9RRaBEQTuqiBNX/9KeqvKVyrJMGYZk206upwoAAAAAyIKchyjXXXfdJh+fOXNm8udBgwZt9nwAANC1MoUonqSQE1WVr6xrJwR0gVAippiTUM+ScsmUlkfq1MNXpn4lPWSZpgIBS7btynXZ3wsAAAAACllebOfVFtQsAQAgP1VlCFEkKWjHunAmQNeyXVfrIkGFElF58tRoR7Qwskah9X/vfT5TPl/BvNwGAAAAAKSR85UomzNo0KDkz/369cvhTAAAQDrlVokMGfLU+hv3QTsiqVeXzwnoSsF4TDHbVo/SMsmVlkZq1ctfrr4lPWSaBqtSAAAAAKCA5X2I8vLLL+d6CgAAYBMMw1ClryRtIXmKy6NYJFxH68JBVQVKVe4vUX0irJAT08CSXirzBeTzmXJdT7bt5nqqAAAAAIB2YH8BAACwxTLVRWE7LxSbpnhUddGgHM9VwnW0OLJOa2KNcj3JNA35/ZZMk21qAQAAAKBQEKIAAIAtVmllClEiXTwTIPfijqN14SZF7LgkqTYe0uLwGkWdhAyDWikAAAAAUEh49wYAALZYxpUoDitRUJw8SY2xiOqjIbmeq5hra3F4rdbGg/I2WJViGKxKAQAAAIB8RogCAAC2WObtvKiJguIWc2ytDQcVtRPyJK2LNWlxZK3iri3DkPx+U5bFS3IAAAAAyFd5X1h+cxzH0dq1a9XU1KSmpibZtt3hvvbcc88szgwAgOJRlSFEaWI7L0CePDXEwoo5flUFyhR1EloYXquaQJX6BCpkWYZM05JtO/K8XM8WAAAAALChggxRFi5cqEceeUQffvihvvjiC8Xj8S3u0zAMffHFF1mYHQAAxWdTheU9z2PLIkBS1E4o7tjqUVKmEsuvNbFGheyoBpT2kt+05PdbchxPjuPmeqoAAAAAgPUKKkRZtWqVrrzySr322mvy1n9Nz+PregAA5FymEMX2HMVcW6WWv4tnBOQn1/NUHw2rzBdQVUmpwk5cC8Nr1Lekh3r5y1mVAgAAAAB5pmBClLffflv/8z//o/r6+mRwYhhGVr7ZShADAMCWqbLShyhSc10UQhQgVcSON69KKS1TwPRpVbRBITuq/iW95DPN9atSXDkOr1MBAAAAIJcKoorl/PnzdcEFF6iuri5lSxDP89r8a0ObegwAALRfppUoEsXlgUwcz1VdJKSmeESePAXtmBaG1yRrCVlWc5gCAAAAAMidvF+J4nmeLr74YoXD4ZTwZKeddtLRRx+trbfeWtdee62WLFmSDFjuvfdeRaNRNTQ0aMmSJfrkk0/07rvvKhaLJfuoqqrSL3/5S22zzTa5fHoAAHQLPtNSqelX1E20eqzJIUQBNiWciCtm2+pZWi6Z0vJIvXr4YupX0kOWaSoQsGTbrlyXL/8AAAAAQFfL+xDlhRde0IIFC2QYRjIkmTJliqZMmZI8p7y8POWavfbaq1U/dXV1evDBBzV16lQlEgk1NTXpz3/+s26++WaNGzeu058HAADdXaWvVNF46xCFlSjA5jmeq9pIUBX+ElUEStRoRxR2YxpQ0ksVvhL5fKZc15NtU3QeAAAAALpS3m/n9eCDD0pSMkA54ogjUgKUturdu7emTJmiRx99VFtttZUMw1AkEtH555+vDz/8MNvTBgCg6GTa0osQBWi7UCKm2khItuvIdl0tjdRqZbRerufJNA0FApZMc8trAgIAAAAA2iavQ5R4PK5PPvkkuQWXaZr6xS9+sUV9jhw5Uvfcc4+qq6tlGIYSiYR+8YtfKBwOZ2PKAAAUrSpCFCArbNfRukhQoURMktSQiGhheI3CdlyS5POZ8vny+mU8AAAAAHQbef3u67PPPlMi0bwtiGEY2m233TRw4MAt7nfw4MH6zW9+k1zdsmrVKt1///1b3C8AAMWswiJEAbIpGI+qNhKU47lKuI6WRNZpdaxRrieZpiG/n1UpAAAAANDZ8jpEWbFiRcrxLrvs0qbrWoKXTTnyyCM1dOhQSc1bhf373/9u/wQBAEBSppUoTYQoQIclXEfrwk2KrF+FUhcPaVF4jSJOQobBqhQAAAAA6Gx5/Y6roaFBUnPIIUlbb7112vNMM/VpxGKxNvX/gx/8INn38uXLtXDhwg7OFAAAZKyJ4hCiAFvCk9QYi6guGpLruYq7thaH12ptvCllVUrLFrgAAAAAgOzJ6xAlGAymHFdWVqY9r6ysLBmGSFIoFGpT/9tss03K8ddff93OGQIAgBaZQpSIE5fjuV08G6D7iTu21oaDiq5flbIuFtTi8BrFXFuGIfn9piwrr1/eAwAAAEDByet3WaWlqR/GZPp23cbhyqpVq9rUf8+ePVP6XblyZXunCAAA1su0nZdEXRQgWzx5aohFVB8Ny/U8xVxbi0JrVBsPyfMky2pZlZLrmQIAAABA95DXIcrG4cjGK1Na9OrVK+V48eLFbeo/HA6nHEcikbZPDgAApMi0EkUiRAGyLeYktC7SpJiTkCdpTaxRSyLrFHed9atSLFalAAAAAEAW5PU7q6222krS9ytF6uvr0543fPjwlPM+/vjjNvXfsn1Xy1ZgZWVlHZ4rAADFrtT0yzLSv7SguDyQfa7nqT4aVmMsLE+eIk5ci8JrVB9v/qIQq1IAAAAAYMvldYiy7bbbphx/++23ac8bNWpU8mfP8zRr1iy57qb3XnccRy+88ELKFmF9+vTZgtkCAFDcDMNQpZWhuDwhCtBpInZC68JNiju2XM/TqliDlkZqZbsuq1IAAAAAYAvl9bup/v37q6amJnk8f/78tOftueeeKfVTVq1apQcffHCTff/jH/9oVQNlp5122oLZAgCATFt6EaIAncvxPNVFQ2qKR+TJU8iOaWF4jRoTzdvVsioFAAAAADomr0MUqTkg8TxPnufpiy++SFsXpby8XAcffLA8z5NhGPI8T9dff73uvfdeOY6Tcm40GtWNN96o22+/PWUVypAhQzRs2LDOfjoAAHRrmYrLBx1CFKArhBNxrQsHlXBtOZ6rFdF6LYvUpaxKMU2SFAAAAABoK1+uJ7A5++67r5577jlJzVtwvfPOOxo/fnyr88455xy98MILySDFtm39+c9/1q233qpddtlFPXv2VF1dnT7++GOFw+GUwMUwDJ1xxhld/MwAAOh+KnwladtZiQJ0HcdzVRsJqcJfoopAiYJ2VBE3rv4lPVXlK5XPZ8p1Jdt2Nt8ZAAAAABS5vF+JMn78ePl8vuSqkaeeeirteTvuuKNOPPH/s3fncXbV9f34X5+z3n32zEwySQhhCSSyiyIICAqFWhSVRQUrUPvlS9Hvo9/Wn9TWKlilLfX7EFqJtoCoBBBbtJstFmSRRRYlQBJIIOtMMpl95m5nP+f3x71zZ+5smeVuM/N6+hgz59zP+ZzPDZMz997X+XzeVxeKxI8GJCMjI/jVr36F//iP/8Bzzz2HTCZTCE5G25188sm46qqrKvOEiIiIlrC4Ep5yPwvLE1VexrEwaKTh+h4838chYwjd5jD8IIAkAZrGWSlERERERERHUvMhSkNDAy6++GK0t7ejvb0dO3funHJJLwD48pe/jAsuuKAoSBkNS0aXBJu4b926dbjrrrsgy3JlnhAREdESNl1NlMPmMN4YOVDh0RCR6/sYMNLIOBYAIOkY2JftQ8bNbSuKBEWp+bcEREREREREVVPzy3kBwLe+9a1ZtVMUBXfddRf+8R//Ef/0T/8EwzAKj43OTBkNWCRJwkc+8hH8xV/8BWKxWFnGTUREtNzE5KmX8/IR4NHulzHiGji78biiumREVH5p24TlOqgLRQAf6DIGUa9G0aLHIUm5ovOe58P3g2oPlYiIiIiIqKYsihBlLhRFwU033YSrr74aTzzxBJ5//nl0d3djaGgIkUgELS0tOOOMM3DRRRexkDwREVGJrQo3zvj4E33bMOJkcUnrKZAYpBBVlON7GMimENPDiCgahp0MMp6J9lADwrKar5USwHX9ag+ViIiIiIioZiy5EGVUY2MjrrjiClxxxRXVHgoREdGyEVNCeE/DMXhx6J1p27wyvAcp18DHV54JVVqyL0WIalIAIGUZsFwHCT0M+MCBbD+atBgatbFZKa7rF2ZwExERERERLWdcAJmIiIhK6qIVJ+Hd9UfP2GZnuhs/OPCrQl0GIqos23MxkE3BcG0AwICdxoFsH0zPhRCAqrJWChEREREREcAQhYiIiEpMEgKXtJ6CD7ZsmrHdQXMQ9+5/EoN2ukIjI6LxAgBJy8CwmYEf+LB8FweyfRiw0wgCFGalsIYREREREREtZwxRABw+fBh/+Zd/We1hEBERLRlCCJzddDw+tvJMSJj+A9ghJ4N79z+JLmOwgqMjovEsz8WAkYbpOQgA9FspHDD6Yftjs1JkmW8biIiIiIhoeVrW74Z6e3tx22234aKLLsJPfvKTag+HiIhoyXlXYjWuXf1+6JI6bZusZ+MHB57BW6lDFRwZEY3nBwFGzCxGrCwCBDA9B/uy/RiyMwAAWR6dlVLlgRIREREREVXYsgxR+vv78Y1vfAMf+tCH8NBDD8G27WoPiYiIaMk6KtqC69eej4QSnraNG3h45OALeHlodwVHRkQTma6D/mwKtuciCAL0Wkl0GoNwfC8/K0XmrBQiIiIiIlpWlGoPoJIGBwfxT//0T3j44YdhmiaCIKj2kIiIiJaFFXoCN6z9AB7seg491siUbQIAP+/ZihEniwtbNrEOA1GV+EGAITODsKohroWQdS3s9/rRoidQp4YhywKSJMN1PfDlNBERERERLXXLIkQZHh7GPffcgy1bthSFJ6MfzjBMISIiKr+EGsZ1a87DIwd/jT3Z3mnbPTe4C0nXwGVtp0OR5AqOkIjGMxwbtuuiLhQGJAWHzWGkXROteh0USYKqyvA8H57H19JERERERLR01VyIMjg4iF/84hd47rnn8M4772BoaAjpdBrRaBRr1qzBqaeeissuuwybNm06Yl+ZTAb33Xcf7r//fmSz2UnhCTAWoFxwwQXleUJERERUoMsqPrX6bPx792/wWvLAtO3eSHYi5Zq4atV7EZK1Co6QiMbzAh+DRgZRVUdU05F2TRiejdZQHeJKCLIsQQjAdb1qD5WIiIiIiKgsRFAj0zBc18XmzZvx/e9/H4ZhAJg8Q2R8+HHhhRfi1ltvRVNT05T9/eu//ivuuOMODAwMzBienHfeefjCF76AjRs3lvT50OI0MJCG79fEP4my0rTcnd27Ut0IAPRlk/Br41JANUgIgUQiVLQvmeSSiLQwQRDgyf4d+NXAWzO2W6En8KmOs1GnRio0MqoGXmcWB0WSUKdHCjPEEkoYK/QEZClXI8V1/WXxOooWJyEEmptjRfv6+9O8zhBRSfAaQ0TlttyvM5Ik0NQUO3LDMqmJmSjZbBaf//zn8fzzzxf9h5+4Fvr4x5544gm8+eabeOCBB9De3l7Yn0qlcMstt+CXv/zljOHJOeecgy984Qs46aSTyvKciIiIaHpCCFzQshF1ahj/eXgrAkz9wq/XSuLe/U/h0x1nozVUV+FREtF4ru9jwEgjpumIqDqSroGsb6FNr0dU0aEoEnw/gOv61R4qERERERFRyUjVHgAAfOlLX8Jzzz2HIAgghCh8TTT+sSAIcPDgQfzRH/0RPC+3fEBPTw+uvPLKQoAyvp8gCBAEAc466yw89NBDuOeeexigEBERVdnp9Ufj6o6zoIrpa5+kXAP3HXgKezLT11EhospJ2xaGjAzcwIPr++gyBtFjjsAPAkiSgKbJkKTJr+WJiIiIiIgWo6qHKI899hj+53/+Z1JwMhp6TPwaNdr2zTffxI9//GMYhoEbbrgBe/fuLQQo4/s588wz8cADD+D73/8+Tj311Mo+SSIiIprWcbF2fHbNeYjK+rRtbN/Fls5n8drI/gqOjIim4/geBrJpZB0LADDsZLEv2wfDtQEAiiJBUar+VoOIiIiIiGjBqr6c1/e+971J+4IgwHvf+16ce+65WLNmDSKRCJLJJHbu3InHH38cb7/9dlHg8qMf/Qg9PT145513JgUxJ554Ir74xS/irLPOqsjzISIiorlbGW7ADWvPx5au5zBgp6ds4yPAz7pfQdIxcE7T8VPOWiWiykrZJizPQUKPAD5wwBhAgxZFs5aAJAmoqgzPY60UIiIiIiJavKpaWP6tt97CRz/60aJZI01NTbjzzjtxxhlnTHvcT37yE9x2221wXbewT1VV2LZdWOorHA7jT/7kT3DNNdeU/XnQ0sHC8kSTseAzVVLWs/Bw1wvoNAZmbHd6/Tpc2noKJME73ZcCXmcWPwEgrocRVjQAgC4paAvVIySrAMBaKVR1y70YKxGVF68xRFRuy/06U+3C8lX95OG5554rfB8EATRNw3333TdjgAIAV1xxBb7xjW8UfkiCICgKUNrb2/Hwww8zQCEiIlpkIrKOa1e/HxtiK2ds95vhvfhx1wuwfXfGdkRUGQGApGVg2MzAD3xYvosD2X7022kEAQqzUjiDjIiIiIiIFpuqhig7duwAgEINk6uvvhrHH3/8rI697LLLcMYZZxQVkB+dgXLPPffMuh8iIiKqLaok44pV78WZDetnbLcrcxg/OPAMMq5ZoZER0ZFYnov+bBqm6yAAMGClcMDoh+27EAJQVQmyzBlkRERERES0eFT1HczE2iaXX375nI4f3340TPnMZz6D9etn/tCFiIiIapskBH5nxcm4aMW7Zmx3yBzCvfufwoCdqtDIiOhIAgQYsbIYsbLwgwCm52Bfpg+DdgYAIMujs1KqPFAiIiIiIqJZqGqIMjIyUvg+FArNefbIKaecMmnfZZddttBhERERUQ0QQuCsxuPw8ZVnQp6h9smQk8G9+586Yh0VIqos03UwYKRgeblZKX1WEp3ZAdi+l5+VInNWChERERER1byqvmtJpcbuGm1sbIQkzW04ra2tRdvRaJSzUIiIiJaYTYnVuHb1OQhJ6rRtDM/GDw88g7dSBys4MiI6Ej8IMGxmkbQMBAiQ9Wzsz/Zh2MkC4KwUIiIiIiKqfVUNUQzDKHwfj8fnfHwsFivabmpqWvCYiIiIqPasjbTg+rXno06JTNvGDXz8+OCv8dLQOxUcGRHNhuHaGMimYfsu/CBAjzmCg8YgXN8fNyuFSQoREREREdWeqoYoQRAUvhcluP0sEpn+gxUiIiJa3Fr0BG5Yez7a9LoZ2/1Xz2v4n943il5nEFH1eYGPISODlJ2blZJ2LezL9iHl5m6skmWJs1KIiIiIiKjmcBFiIiIiWjTiahifXXMe1kdXzNju+cFdePTQS3B9r0IjI6LZyjq5WSmO78ELfBwyhnHIGIY3blaKJDFJISIiIiKi2sAQhYiIiBYVXVbxyY6zcUrd2hnbbUt14YHOZ2F4doVGRkSz5QU+Bo000raJAAFSroF9Rh8yrgUAUBQJisK3KkREREREVH18Z0JERESLjiwkXNZ2Os5rOmHGdvuNfnx//1MYyRexJqLaknEsDBoZuL4H1/fRZQzisDkMPwggSQKaxlkpRERERERUXQxRiIiIaFESQuD8lhPxe22nQWD6D1n77BTu2f8kDpvDlRscEc2a63sYMNLIOLlZKCOOgX3ZPmTd3CwyzkohIiIiIqJqUqo9gFEjIyP42c9+VtU+PvrRjy7o/ERERFR5p9WvQ1wJ4ycHfw0nmLoGSto18f0DT+PKVe/F+mhrhUdIRLORtk1YroO6UATwgU5jAA1aFM1aApIkoKoyPM+H7wfVHioRERERES0jIgiCqr0L2bBhA4QQCIIAQsxvmv744c+3j1Fvvvnmgo6nxW9gIL0s3phrmgwA2JXqRgCgL5uEX71LAdU4IQQSiVDRvmTSRBV/fRBN6ZA5hAc7n0PGs6ZtI0Hg99pPP2I9FaosXmdoPAEgrocRVjQAgCYpaAvVIyyrAADfD+C6fhVHSIuREALNzbGiff39aV5niKgkeI0honJb7tcZSRJoaooduWG5zl+1M08QBMG8vkrRx3L5YSMiIlrKVoYacMPaD6BJm/6FlY8A/9r9Cp7pf5O//4lqVAAgaRkYMjPwAx+27+JAth/9dgp+gMKslIXeQEVERERERDQbNRGiCCGq+kVERERLQ4MWxQ1rP4DV4aYZ2z3ZvwP/fvi38APezU5Uq2zPRX82DTNfG2XASuNAtg+W70IIQFUlyHJNvJ0hIiIiIqIlrOo1UXgXaG3KZDLYunUr9u3bh2QyCUVR0NzcjOOPPx4nnHACwyciIqpZYVnDZ1a/H492v4w3UwenbffqyD6kXROfWPUeaFLVXxIR0RQCBBixDJiui4QehuW72J/pQ7OeQIMahSwLSJIM3w/g+5xhTkREREREpVfVTwxuvvnmap5+Udu9ezc++tGPwrbtov2rVq3CL3/5y3n3u3PnTmzevBmPP/44HMeZss2KFStw1VVX4frrr0ckEpn3uYiIiMpFkWRcsfI9eKz3dbw49M607d7OHMb9B57GpzrORkwJTduOiKrL8hwMGLkgRZdV9FlJpF0TbaF6aJIMWRaQ5dxNPqOBynKoc0dEREREROVX1cLyND9BEODTn/40fvOb30x6bL4hShAE2Lx5M77zne/Add1ZHbNy5UrceeedOOmkk+Z8vlrFwvJEk7HgMy12Lwy+jV/0vj5jm3o1gk93nINmPV6hUdF4vM7QXIQVFXE9DAEBASCi6IjJIcSUEBSpeHkvBio0arkXYyWi8uI1hojKbblfZ1hYnubsoYcemjJAWYjbbrsNd95556wDFAA4dOgQrr32Wrz88sslHQsREVEpndV4LD6x8j2QxfQve4adLO7b/xQOZPsrODIimg/DdTCQTcHyHAQAMq6FHmsEuzM92J/tx4CdhuXnXtNKkoCiSNA0Gaqam7HCVWmJiIiIiGguGKIsMj09PfjWt75V0j63bNmCBx98sGhfJBLB9ddfj5/85Cf49a9/jSeeeAKbN2/G2WefXdTONE3cfPPN6O7uLumYiIiISmljogPXrn4/QpI6bRvDt/HDzl9hR3L6OipEVBu8IMCwmUV/NoWUbcLJhyam56DfSmFfpg97Mr3otZIwXBtBAAgByLIEVR0NVCQGKkREREREdEQMURaZ2267Del0GgAQCoVwxhlnLKi//v5+3HHHHUX7Wltb8cgjj+BLX/oSTjrpJDQ0NKCjowMXXHAB7rvvPnzpS18qKiw/PDyM22+/fUHjICIiKre1kWZcv/Z81CnT1/PyAh8/OfRr/Hrw7QqOjIjmywt8ZB0Lg0YGfdkkkpaRn6ESwPE9DNkZHDAGsDvbg8PmMFKuCT8I8oGKmBCoMFEhIiIiIqLJGKIsIo899hgef/zxwvb//t//G6tXr15Qn9/97ndhGEZhW5Zl3H333Tj22GOnPeb666/HtddeW7TvF7/4BbZv376gsRAREZVbi57AHxz1AbTr9TO2e6z3dTzW8/qyWV+WaCnwgwCGa2PYzKIvk8SwmYHh2vCDAJ7vY8QxcMgYwjuZHhw0hjDiGHB9f1ygklv2S1EkSBIDFSIiIiIiymGIskikUil8/etfL2wfc8wxuOGGGxbUZ39/Px5++OGifZ/+9KexadOmIx77x3/8x1ixYkVhOwgC3H333QsaDxERUSXElBB+f825OCbaOmO7Xw+9jX859BJc36vQyIioVAIAluciaRnoyyYxZKaRdSx4gY8gCJB2TRw2h7E704PO7AAG7Qzs/L/18XVUFEVmoEJEREREtMwxRFkk7rjjDvT19QEAhBC49dZboarTr+s+G0888QQcxylsCyHwmc98ZlbHRiIRfPzjHy/a98wzzyCTySxoTERERJWgyyqu7ngfTq07asZ221Nd+FHnszA8uzIDI6KysD0PKdtEfzaFASOFtG0WAtKsZ6PPSmJvphf7Mn3ot1IwvNxrZEnChML0rKNCRERERLTcMERZBF5++WU88sgjhe2PfexjC66FAuRClPFOP/30OS0P9rGPfaxo27ZtPPvsswseFxERUSXIQsLvtZ2G85tPnLHdAaMf9+1/CsM2bxQgWgpc30fGsTBgpNGfTSJpG7A9FwECWL6LATuNA9l+7M70oMccQca14BcK07OOChERERHRcsMQpcbZto2vfOUrhTXZGxoa8MUvfrEk/b7wwgtF+84888w59bFmzRq0tbUV7XvqqacWOjQiIqKKEULgvOYTcFnb6RCY/sPQfjuFe/c/hW5zuHKDI6Ky84IAhmNjyMygL5PEiJWF6eYK07u+j2Eniy5jEHsyPeg2hpFyjQmF6VlHhYiIiIhoqWOIUuPuvvtu7N27t7D9pS99CQ0NDQvud9++fbDt4qVJTjvttDn3M/GYXbt2LWhcRERE1XBq/VH4VMf7oEnKtG3Snon7DzyNd9KHKzgyIqqUAIDpOhixsujNJDFUKEzvwwt8JF0Dh4xhvJM+jE5jEMN2Bq7vA5hYR4WBChERERHRUsIQpYbt2rUL99xzT2H7zDPPxOWXX16Svvfs2TNp3/r16+fcz8Rjxgc+REREi8kxsTZ8ds15iMmhadvYvosHu57Hq8P7KjcwIqoKu1CYPoVBI42MY8H1PQQAsq6FHiuJ3Zke7M/2Y8BOw/JdAMWBSm7ZL8E6KkREREREixhDlBrl+z6+8pWvFAq/q6qKr33tayXrf/fu3UXbsiyjtbV1zv1MXM4rk8mgp6dnQWMjIiKqlvZQPW446nw0a/Fp2wQI8G+Hf4On+ncUltskoqXN8T2kbTNfRyWFlG3CyYcmpueg30phX6YPezK96LWSyLo2gkIdFWlCHZUqPxkiIiIiIpqT6desoKrasmULtm7dWtj+3Oc+N6+ZItPp7e0t2m5paYEsy3PuZ+XKlZP29fT0zCuQqQVCLI87BQtFUIUAEOSed1VHRLVsqp8NAWBZ/GOhZalBi+GGoz6Ah7uex/5s/7Ttnu5/E0nHwIfbT4MseF/KQvA6Q4uJjwCGa8NwbUhCQJMVhBQVmqzACTwMORkMORnIQkJMDiGmhBBRdMiSyC/zJSEIAN8P4PsBw9gKmepyktvH6wwRLRyvMURUbsv9OiOq/N6QIUoN6u7uxv/7f/+vsL127VrceOONJT1HNpst2o7FYvPqZ6rjMpnMvPqqBY2N0WoPoaKingYfARJyCD74Bp5mL56YfrkjoqUggRBuqvsQHtr9PLYO7p+23asj+5CFhd8/9lyEZLWCI1z6eJ2hxcSHDxM2NEmBKsnQJAVCCDhwMYQ0RvwMomoICTWEuBqGIs395iUqvaam+b0HIiKaDV5jiKjceJ2pHN42WYO+9rWvFYUcX/3qV6HreknPMTFEmW//Ux03sW8iIqLFSJVkXHPMOTi/7YQZ2+0c6cZ3dvwCSZu//4iWO9t3kXEtDNkZJG0DppcrTO8jQMoxcDA7hJ0j3diT7EW/mYTlOdUeMhERERERHQFDlBrz85//HE899VRh+8Mf/jDOPvvskp/HMIyi7fmGKKHQ5LtEGaIQEdFSIQmBy9aejo+uPWPGSdIHs0O4c/tj6DFGKjY2IqptbuAh69oYtrMYsbMwXBue7yFAgKxn4bAxgreTh/F28jB6siPIula1h0xERERERFNgiFJDhoeH8Y1vfKOwXVdXhy9/+ctVHBEREREBwLltG/D7x54LRUy/BM+QncFd2x/DnmTvtG2IaHnyAh+GZ2PEMTBsZZB1LTi+BwCwPAd9VhJ7Ur14a/gQDmWHkHZM+IFf5VETERERERHAmig15W/+5m/Q3z9WwPZP/uRP0NTUVJZzhcPhom3Lmt+db6ZpTtoXiUTm1VctGBzMwPeXfm0QTct9CJjJ2ggQIJk14bOoKU1DYHJtglTSZBUdWnaOUlbgM2vej4e6nofh2VO2MTwbm996HB9beSY2JjoqPMLFi9cZWq4EAF1RocsKNFmFEEAyk5sxLgsJUVlHTAkhKuuQpbH734IACIKgUJyejkyIyeuGDwykwZfARFQKvMYQUbkt9+uMJImq1rJmiFIjXnjhBTz66KOF7VNPPRVXXnll2c43MeiYb4gy1XGLOUQJggDBMrj6FJ5j/s/l8rxpnsTkRYwCgD8ztCytDjfh+jXnY0vXsxh2pl6+0gt8/OTgrzHinISzGo+t8AgXKV5naJkKABiODcPJBbOarEBXVIRkBRBA0jeQdAwIAGFFR1zWEVPCUCQJQgCyLCDLohCmMFCZyRTXmYDXGSIqFV5jiKjclvd1ptpPk8t51QDTNPHVr361sK0oCm699VaIKT5QKJWJQUc6nZ5XP1MdF41WLxUkIiIqt2Y9jhvWfgDtofoZ2/2i93X8d89rnOlHRLNmey5SloG+bAqDRhoZx4TrewgAZF0LPVYSuzM92Jfpw4Cdhum5AHJ35imKBE2ToaoyZFlMlU0SEREREdE81PRMlNdffx0PPfRQYVuWZfzlX/4lNE2r4qhK7+6778b+/fsL25/97Gdx/PHHl/WcK1asKNru6+uD53mQ5enXep9Kd3f3EfsmIiJaamJKCJ9dcx7++eCLeDtzeNp2Lw69g6Rr4PL2d0OV5vY7loiWN8f34Nge0rAgCwm6kpulokkKLN+FZaXQjxRUSUZMCSEmhxCWtfwMFQmynLtjb3SGynK5S5GIiIiIqNRqOkTZunUrfvrTnxZmZLzvfe9bcgEKALz66qtF25Zl4e/+7u9mdez27duLtkdGRiYdu3HjRlxyySVF+44++uiibc/z0NPTg5UrV8522AAmhyjRaBRtbW1z6oOIiGgx0iQFV3echf88/Cp+O7Jv2nZvpg4i7Zq4uuMsRGS9cgMkoiXDC3xkHRtZx4YkBPT8sl+arMDxPQzZGQwhk6ujoozVUZGEKCz5xToqRERERETzU9MhSiaTAZB7sS+EwHve854qj6gyfvSjH8372HQ6jX/6p38q2nf55ZdPClHWr18/6djdu3fPOUTZs2dP0fa6devmdDwREdFiJgkJH247DXVqFE/2b5+2XacxgPv2P4VPd5yDBo3LXhLR/PlBAMN1YLgOABQCFV1WAfhIOvk6KkIgKmuI5mep5OqoCEhS7gY11lEhIiIiIpqdmq6JMnHWCWc4lM5RRx016e934oyY2fjtb39btH3cccctaFxERESLjRAC5zZvwEfaz4A0RbG/UQN2GvfufxKHzKEKjo6IljrLc5G0DPRlk/k6Kha8wEcQBEi7FnrMEezO9OBAdgCDdga2P7mOiqLIhXCFiIiIiIiK1XSI0tDQULRdzkLry42maTjrrLOK9r300ktz6qOzs3PScl7nn3/+QodGRES0KJ1StxafWn02NGn6ib4Zz8L9+5/G2+nJNcWIiBbK8T2kbRP92RQGjBTStgnH9wAAhmejz0pib6YP+zJ96LdSMLzcbBZJwoTC9BIL0xMRERER5dX0cl6jS0ONhicDAwPVHE7ZLGT5rltuuQU//elPC9urVq3CL3/5y1kde+GFF+Lpp58ubL/yyivo7OzE6tWrZ3X8+PMCuWDmnHPOmdWxRERES9H6aCuuW3MeHux6DinXnLKNE3h4qOsFfLjtVJxWz2Uwiag8XN+H61vIOFa+jooKXVGgyfnC9HYaA3YaiiQhJocQU0IIyzokgXwdFZmF6YmIiIiIUOMzUTZt2oRwOFzYnrh0FC3MhRdeCFVVC9tBEOCBBx6Y1bGGYeCf//mfi/ade+65iEa5zjsRES1vbaF63LD2A2jR4tO2CRDg3w//Fk/27eAHk0RUdrk6KjaGzSz6MkmMWFmYro0AAVzfx7CTRZcxiN2ZwzhkDCPpGPB8HyIfqKjq6LJfEpf9IiIiIqJlp6ZDFFVVcdFFFyEIcnc+PffccxgZGan2sJaM5uZmXHXVVUX7HnjgAezYseOIx377299GT09PYVsIgZtuuqnkYyQiIlqM6tQIrlt7PtaGm2ds98zAm/i3w7+BF/gVGhkRLXcBANN1MGIZ6M0kMWRmkHVteIEPPwiQcg10m8PYnelBpzGIITtTWBKsuI4KAxUiIiIiWh5qOkQBgM997nNQFAVCCGSzWdx5553VHtKScuONNxbN9nFdFzfddBPeeeedaY+5//778YMf/KBo30UXXYSNGzeWbZxERESLTVjWcM3qc7Ap3jFju60j+/Fg53Ow8rUJiIgqyfZcpCwjX0cljYxjwvU9BACyroVeK4k9md5cHRU7DdObXJg+V0dFsI4KERERES1JNR+iHHPMMbjpppsKS1089NBDkz7Ap/lraWnBn/7pnxbt6+7uxpVXXom//du/xbZt2zA8PIxDhw7hySefxA033IDbb7+9aOmR+vp63HLLLZUeOhERUc1TJBkfW3km3td43Izt9mR7cf+Bp5FyjAqNjIhoMtf3kLYtDBhp9GdTSNkGbN9FgACW72LASmF/tg97Mr3otZLIujaCAPllvySo6vjC9ExUiIiIiGhpqOnC8qNuuukm9PX14aGHHgIA/PVf/zVeffVV/H//3/+HlStXVnl0i98111yDd955p/D3CwCZTAb33nsv7r333hmPDYVC+Pu//3v+dyAiIpqGEAIfWvEu1KkR/FfP1mnbHbZGcO/+p/Cp1WdjhZ6o3ACJiKbgBT6yjo2sY0NAQFcU6IoKXVbg+B6G7AyGkIEsJERlHTE1hKisQxIiX5heIAhydRdHi9MTERERES1GNR+iHDp0CEBuWa9EIoF77rkHnufhsccew//8z//gve99L97znvfgxBNPRFNTE2KxGGRZnte5lnMQ8NWvfhXNzc24++674XnerI5pb2/HnXfeiZNPPrnMoyMiIlr8zmxYj4QSwr8cegnuNDVQRtwsvr//KVzVcRaOirRUeIRERFMLEMB0HZhubtlBXR4LVAAg6RpIugYEgKiiI6qEEJNDUKTcjJTR2imjYQoDFSIiIiJaTGo+RLngggsmTQUXQiAIAnieh+effx7PP//8gs8jhJhVQfWlSgiBm2++GR/84AexefNmPPHEE3Ccqddmb2lpwdVXX43rrrsO0Wi0wiMlIiJavDbEV+Eza87FQ13Pw/DsKduYvoMHOp/FR9vPwKbE6gqPkIjoyCzPhZWvjaJKMnRFRUhRIQsJaddC2rXQgxGEZQ0xJYSYokOTFEjS+EAFCAIfnsdAhYiIiIhqmwjGF7eoQRs2bJhy/2iwUqrhCyHw5ptvlqSvpSCdTuPVV1/F/v37kUqlIMsympqasGHDBpx44olLdo3jgYH0srgzTtNys7V2pboRAOjLJuHX9qWAqkgIgUQiVLQvmTRLdv0lWo4G7BS2dD6HISczY7sPtbwLZzUeu2R/747idYZoaZCFhJCiQlcUqFLx/XqapCCm6IgpYYRlteixIBidpeKjXP/shRBobo4V7evvT/M6Q0QlwWsMEZXbcr/OSJJAU1PsyA3LpOZnogCY8YODUnyosFx+2OYiFovh/e9/P97//vdXeyhERERLTpMWxw1rz8eDXc/jkDk0bbv/6XsDI24WF684GdISD1KIaPHzAh8Zx0LGsSAJAV3OBSqarMD2XQzaLgbtDBRJQkwOIaaEEJZ1SAL5OiryuEAl4Ps0IiIiIqoJiyJE4YtnIiIiWmqiSgi/v+Zc/MvBF7Erc3jadi8N7UbSMfCxlWdCleZX942IqNL8IIDh2jBcGwIo1FDRFRWu72PYz2LYyUISAhFZzy37JeuQJalQmB5gHRUiIiIiqr6aD1Fuv/32ag+BiIiIqCw0ScFVHWfh5z1b8ZvhvdO2eyt9CD/sfAafXPU+RBS9giMkIlq4ABgrTG8Z0GSlEKgAEtKuibRrAgAiio5YPlRRJXlCHRUGKkRERERUeTUfolx++eXVHgIRERFR2UhCwu+2nop6NYon+rZN267LGMS9+5/CNavPRoNWvbVgiYgWyvZc2J6LlG1CkWSEFAW6rEKRZGRdC1nXQq+VhC4piKlhxOQQQnJxYfrcsl9+ftmvKj8hIiIiIlrSpGoPgIiIiGi5E0LgnKbjcXn7uyFh+tong04a9+5/CgeNwQqOjoiofFzfQ9q2MGCk0Z9NIWUbsD0XAQJYvosBK4X92T7syfSix0wi41oIAkAIQJYlqKoMVZUhy1JJ6mUSEREREU3EEIWIiIioRpxUtwafXn0OdGn6ycIZz8IPDjyDXenuCo6MiKj8vMBH1rExZGbQl0lhxMrC9BwECOD4HoadDLqMQezO9KDbGEbKNeEHQT5QEVDVXKiiKFJhxgoRERER0UIxRCEiIiKqIUdHV+C6NecjroSnbeMEHh7ueh6/Gd5TwZEREVVOgACm62DEzKI3k8SwmYHh2vADH17gI+kaOGQM4Z30YXQZgxh2snB9H0IAkiSgKBI0jYEKERERES0cQxQiIiKiGtMaqsMfrD0fK/TEtG0CAP9x+FX8sm87AhYEIKIlzvJcJC0DfdkUBo00Mo4FN/AQAMi4FnrMEezO9GB/th+Ddga27wIoDlSIiIiIiOaDIQoRERFRDUqoEVy35jwcFWmZsd2vBt7Cv3a/Ai/wKzQyIqLqcnwPadvEQDZXRyVtm3DyoYnpOeizktib6cPeTB/6rCQM154ybJZlzlIhIiIioiObfsHtRaazsxNDQ0MYHh5GJpNBNBpFfX09GhoasHr16moPj4iIiGjOQrKGT3ecjX87/Bu8keyctt1ryQNIuSauWPVehGS1giMkIqouL/CRcSxkHAuSENBlFbqiQJMV2L6LQdvFIDJQJAmtSh3iahhRRYMsyZBlAUnK3VcYBIDvBwiCAL7P2X1ERERENGbRhiipVAr/8i//gueffx5bt25FKpWatm0ikcDJJ5+Ms88+Gx//+McRi8UqOFIiIiKi+VMkGZe3vxsJJYLnBndO225Pthf3H3gan+o4Gwl1+noqRERLlR8EMFwbhmtDANBkFSFFgSarcAMfQ3YGQ3YGEgRCsobAAiKShpCsQcoXpwdyM1NGQ5XRYIWIiIiIli8RLLJXhOl0Gt/+9rfx6KOPwjAMAJjVi1ohci+Gw+EwrrjiCnz+859nmEKTDAykl8WdZ6NrQu9KdSMA0JdNwl9clwKqICEEEolQ0b5k0uQHCkRV8PLQbvxXz1bM9K8voYTx6dVnY4VeV7FxLRSvM0RUbrqiorEuCk2SIYnc7JNs1gaC3DUoLGuIyjrCsoaQpEJMWOWLoQoRzUQIgebm4s+Y+vvTvF4QUcks9+uMJAk0NVXvs/xFFaK8+uqr+OIXv4iDBw8W/YCIia9wpzCxfUdHB+644w6ccsop5RgqLVIMUYgm44ebRLVlZ+oQ/vnQS3ADb9o2uqTiqlXvxbroigqObP54nSGicht/nZEgoEoyLMMrClVGyULKhyoaIooOTZq8gMP4pb94qSKi5f7hJhGV33K/zlQ7RFk0heV//etf4/d///cLAYoQovAF5EKS6b4AFLUPggCdnZ249tpr8eKLL1bzaRERERHNyfHxlfj9NeciImvTtrF8Bw90Pos3Rg5UcGRERIuDjwCW7yJpGejLptCfTSFpGzA9BwECeIGPtGuiJ1+gfnemB93GMEYcA46fC7AlSUCWJaiqDE2ToSi5IvWzuL+PiIiIiBaZRTETZdeuXfjUpz6FdDpdNOtkdOgdHR3YtGkTjjnmGCQSCYTDYRiGgWQyid27d+ONN95AV1cXAEw6Ph6P46GHHsIxxxxT2SdFNYkzUYgm4x3iRLVp0E7jgc5nMeRkZmz3wZZNeF/jcbOauVstvM4QUbnN5TqjSDJ0OVecXpVlCBRfP1VJRlTWEVE0hCUdilR8b2IQoDBLZTm8tyAi3iFOROW33K8z1Z6JsigKy//lX/5lUYAyOhPl8ssvx6c+9Sm8613vOmIf27dvx5YtW/Czn/2saHZKKpXCV77yFTz00ENlfQ5EREREpdSoxXDD2g/goa7ncdAcnLbd433bMOxkcUnrKZBqOEghIqoVru/B9T1kHAsAoMkytHyookgyHN/DsJ/FsJMFAOiSgoiiF2qqSPkVECSpuEj9aLBCRERERItLzS/n9fjjj2Pr1q1FAUprayseeugh3H777bMKUABg48aN+OY3v4mHH34YbW1tRY9t3boVjz/+eMnHTkRERFROUUXH7695P46Ptc/Y7pXhPXjk4AtwfLdCIyMiWjpsz0PatjBoZNCXSWLIzCDjWHDzS3tZvoshO4MuYxDvpA/jQHYA/XYKWdeGHwBCALIsoCgSNE2GqsqQZammZwgSERER0ZiaD1HGzxAJggBtbW3YsmXLvAvCn3TSSXjggQfQ2to67XmIiIiIFgtVUnDlqrNwRv3RM7bbme7GDw78ChnXqtDIiIiWngCA7blI2yYGjDT6skmMWFkYrg0v8BEAMDwbA1YancYA3skcRqcxiEE7k6u5Mi5UUVWGKkRERESLQU2HKJZl4ZVXXikUgxdC4NZbb0VHR8eC+l21ahVuvfXWQp9BEOA3v/kNLIsfKhAREdHiIwmBS1tPwYUtm2Zsd9AcxH37n8Sgna7QyIiIljY/CGC6DpKWgf5sCv3ZJJJWFqZrww98BEGArGuhz0pif7YfuzM9OGgMYdjOwM7PDpwYqiiKBFlmkXoiIiKiWlHTIcrWrVuLgo3jjz8e5513Xkn6Pu+883DCCScUti3LwtatW0vSNxEREVGlCSFwTtPx+Fj7uyFh+k/eBp0M7t3/JLqM6euoEBHR/HhBAMN1MGIZ6Mum0J9NIWkbuVkoCOAFPtKuiR4rib2ZPuzO9KDbGMaIY8DJLw8mSQKyLEFV5UKoIkkMVYiIiIiqpaZDlN7e3sL3QghceOGFJe3/ggsuKBSZn3g+IiIiosXoXXVrcM3qc6BLyrRtsp6NHxx4BjtThyo4MiKi5ccLfBiOjREzi95MEoNGGmnbhO25CBDA9X0kXQOHzWHsyfRiT6YXPeYIUq4B1/cB5EIVRcmFKqo6FqoQERERUWXUdIgyOJi7Q3I06Fi1alVJ+5+4LNjAwEBJ+yciIiKqhnXRFbh+7flIKOFp27iBhx8ffAEvD+2u4MiIiJY3x/eQcSwMmRn0ZpIYMtPIOCYcPxeqOL6HYSeLQ8Ywdmd6sC/Th14riYxrwQ8CCDEWqoyvp8JQhYiIiKh8pr9FsQZMrFESCoVK2r+u6wBQKODnOE5J+yciIiKqlhV6HW5Y+wE82PUceqyRKdsEAH7esxUjjoELWzayqDERUYXZngfb8wBYEABUWYEmK9BlBYokw/JdWLaLIWQgAIRkDRFFQ0TSEZI1SPl6Ksgv4xgEgO8H8P2gaNUFIiIiIpq/mg5RGhsbi7ZLvdxWX18fABQKzDc0NJS0fyIiIqJqSqhhfHbNeXjk4AvYm+2btt1zgzuRdLP4SPsZkEVNT1QmIlqyAgC258L2XKQBSEJAy4cqmqxAFhIMz4bh2RhAGkIIhGUNUVlHRNagS2qhSH0uWGGoQkRERFQKNf0ueTREGb0r8je/+U1J+5/Y38TQhoiIiGixC8kqPr36HJyUWDNjuzeSndjS+SxMjzNziYhqgR8EMF0HSctAfzaF/mwSSSsL07XhBz6CIEDWtdBnJbE/24/dmR4cNIYwbGdg+y4AFEIVVZUKReplmUXqiYiIiOaipmeinHDCCYXvgyDAr371K/T19aGlpWXBfQ8MDOCZZ56BEKJwR8748xEREREtFbKQ8NH2M1CnRvCrgbembbc324fvH3gKn+o4G3VqpIIjJCKiI/GCAIbrwHBzYbcsJOiKAjW//JcX+Ei7JtKuCViAIkmISDoiio6orEORRmunCMhyrs/xs1Q4UYWIiIhoajU9E6W9vR3HHHNMYduyLNx2220l6fu2226DaZqF7aOPPhrt7e0l6ZuIiIio1gghcEHLRvxu66mY6QbkXiuJe/c/hR5z6joqRERUG7zAR9axMWJm0ZtJYtBII22bsL1ckXrX95F0DRw2c0Xq92R60WOOIOWacH0fwFiRelXNFalXFBapJyIiIpqopkMUAPjgBz9YqFkSBAEef/xxfPWrX11Qn3/1V3+Fxx57rNCnEAIXX3xxiUZMREREVLvOaDgaV3e8D6qQp22Tcg18/8BT2JMpbT06IiIqH8f3kHEsDJkZ9GaSGDLTyDgmHD8Xqji+h2Eni0PGEHZnerAv04deK4mMa8EPAggxFqpoWi5UkWWGKkREREQ1H6LccMMNqKurA4BC6PHII4/gqquuwvbt2+fU144dO3D11Vdjy5YtRfsTiQSuu+66ko2ZiIiIqJYdF2vH7685FxFZn7aN5bvY0vksXh85UMGRERFRqdieh7RtYdDIoC+TxJCZQcax4PoegNx1fsjOoMsYxDvpwziQHUC/nULWteEHY/VUJoYqggVViIiIaJmp6ZooABCPx3HzzTfjG9/4BoQQhSDltddewyc+8Qls2rQJF198MTZt2oT169cjkUhA13VYloVkMondu3dj27ZteOyxx7Bt2zYAKJrZIoTA5z//ecTj8So/UyIiIqLKWRVuxA1rz8eWzucw6KSnbOMjwE+7X8aIm8U5jcfzgzMiokUqAGB7LmzPRRqAJAQ0WSl8yUKC4dkwPBsDSEMIgbCsISrriMgadEkthCqynPtdEATFNVWIiIiIlqqaD1EA4Nprr8Xbb7+NRx55pChICYIAb7zxRiEcGTW+WPyo8dvjPwC44oorcM0115T3CRARERHVoEYthhvWno+HDj6PLmNw2na/7NuOESeLS1tPgSRqfiIzEREdgR8EMF0HZqFIfXGoIkFC1rWQda3841I+VNEQUXRokjIpVBkNU3J/Vu2pEREREZXcoghRAOBrX/saXNfFo48+WghSABTClPGmuwtmfHgSBAE+/vGP49Zbby3foImIiIhqXETR8ZnV5+LRQy/hrfShadv9ZngvUq6Jj688E5q0aF5CEhHRLHhBAMN1YBRCFQm6MhaqeIGPtGsi7ZqABSiShIikI6LoiMo6FGm0doqAnC+5NX6WCkMVIiIiWsxEsMjm3f785z/HrbfeipGRkXktKREEAerq6vC1r30Nl1xySRlGSIvZwEAavr+o/knMi6bl3tnsSnUjANCXTcJfXJcCqiAhBBKJUNG+ZNLksg1ES4wfBPjvntfw8vDuGdutCjXgkx3vQ1QJzdhuLnidIaJy43VmYVRJLgQqqixDQEx6PCrnQpWwpEGRimctBgEKs1SWw/stWn6EEGhujhXt6+9P8xpDRCWz3K8zkiTQ1BQ7csMyWXQhCgBks1k8+uij2LJlC/bu3Tvr49avX49PfepTuPzyyxGJRMo4QlqsGKIQTcYPHYiWjyAI8MLg2/ifvjdmbNegRvHp1WejSStNTTleZ4io3HidKS1NHgtVFGlyqKJLSmGWSljWIE24AXK0nsposEK02C33DzeJqPyW+3WGIcoCHT58GL/97W+xfft2DA0NIZlMIpPJIBqNIpFIoLGxESeeeCJOO+00tLW1VXu4VOMYohBNxg8diJafbclO/Kz7FXiBP22bsKzhUx3vQ0e4acHn43WGiMqN15nyEUBRPRVFkic9HpI1RBQNUUmHLmuQJiwqwSL1tNgt9w83iaj8lvt1hiEKUQ1hiEI0GT90IFqe9mX78OOuF2D6zrRtFCHh4yvfgw3xlQs6F68zRFRuvM5UjjShSL0sipf2EkLki9TriMgadEnFxJW6GarQYrPcP9wkovJb7teZaocoNV0V9J133sF///d/F7aFEPjc5z4HTdOqOCoiIiKipe+oSAuuW3s+tnQ+i6RrTNnGDXz8+OALuKT1FJzZsL7CIyQiolrkBwFM14FZKFJfHKpIkJB1LWRdK/+4lA9VNEQUHZqkQAhAlgVkOZeujF/6a5l8VkREREQ1pKZDlBdffBH/8A//UCggf/LJJ+OP/uiPqjwqIiIiouVhhZ7AH6z9ALZ0PYcea2Tadv/VsxUjThYfbNlUeN1GREQEAF4QwHAdGPlQRZGkolDFC3ykXRNp1wSs3OMRSS/UVFEkCZIkAAjI+ZXCxs9SYahCRERE5VbTIUoqlQKQK3IqhMC5555b5RERERERLS9xNYzr1pyHRw7+GnuyvdO2e35wF5KugY+0nT5pPXwiIqJRru/D9W1kHRsAoEpjRepVWYbr+0j6RmEWpCrJuaW/FB0RSYOcD1WkfGGVIEBhlspyWJqZiIiIKq+mQxRZLn4DzsLwRERERJWnyyo+tfps/Hv3b/Facv+07bYlO5F2TVy16r0IyVx+lYiIjszxPTi+h4yTW95Lk+WiIvWO72HYz2LYyQIAdEkpzFIJyxokISBEcagyfvkvIiIiooWq6RClvr6+aDsUCk3dkIiIiIjKShYSPtJ+OurUCJ4ZeHPadvuyfbhv/9P49OqzUadGKjhCIiJaCmzPg+15ACwIoGjpL0WSYfkuLNvFEDIQAEKyhoiiISrp0GUNUr6eClAcqrBIPREREc1XTYcoa9euBYDC2toDAwPVHA4RERHRsiaEwAdaTkSdGsZ/HH4VAab+MKrPTuLe/U/iUx1noy1UX9lBEhHRkhEAsDwXlucCAKQJReplIcHwbBiejQGkIYRARNYQkXVEZA26pE4qUs9QheZicqk3MeVjrAlHRLS01XSIctJJJ0HTNDhOrgDdG2+8UeUREREREdFp9esQV0L4ycEX4QTelG1SronvH3gaV656L9ZHWys8QiIiWor8IIDpOjDzRerlCaGKBAkZ10LGtfKPSwjLGqKyhoiiQ5OUSaHK+KW/mKmUztSZwtQBxPTHTt1o5rxCHOHxIx0/P1OFKKoqw/N8BnZEREtATYcooVAI5557Lh5//HEAwDPPPAPTNLmsFxEREVGVHRtrx2fXnocHO59DxrOmbGP7Lh7sfA6XtZ+Ok+vWVniERES01HlBAMN1YORDFUWSikIVL/CRdk2kXROwco9HJL1QU0XJF6kHBEZLso6fpVKtz71nmv0w9eNTPTbXAKI64UOtCQIUZtr6+R+AIP+/3L7RPbnG/vhZuXbuZ0YIgaiqFwV2QYBCWMdaPUREi09NhygAcMMNN+CJJ54AAIyMjOCee+7BzTffXOVREREREdHKUANuWPsBbOl6FgN2eso2PgL8rPsVjDgG3t90PJe7ICKisnF9H65vI+vYAABVGitSr8oyXN9H0jeQdA0AgCYpueW/FB0RSYOcD1XGF6kfDVNqcfZDrSkEDMHYgp/BuAhifECRa5MPJor25dsEGBddjLYZ6zsIxvUeoLifcSHHaH+jM0Emt8nvGzfmeRFARNIKmxIEYAlEFR0xOQRFkiDE2M/WaJjCQIWIaHGo+RDl1FNPxSc/+Uk8+OCDEELgu9/9Lo477jhcdNFF1R4aERER0bLXoEVx/drz8XDXC+g0pq9f92T/dow4Gfxu26mQhFTBERIR0XLl+B4c30PGyc2Y1GS5qEi97buwfRfDThYAoEtKYZZKWNYgCVGR8D8XLgATAwh/LFIY2z8+aBjfJt9HkA8E/NG+iwKFqQOIcWfJ//9YyBEUZmOMC0AmBBdLeamq8dHK2N/buMdGNwTg+rklTiUhACEh61lIuyZ6MIKQrCKuhBHLLys3MazzfZ9LyhER1TARLILfdq7r4vOf/zyefPJJAIAsy/jsZz+Lm2++GeFwuMqjo6VkYCC9LO4E0bTcXPVdqW4EAPqyycJUZaKJhBBIJIqXUUwmzSX9ZomI5s7xPfy0+2W8mTo4Y7tjo234xKr3QJPG7uXhdYaIyo3XGZpIAEVLfymSPOnxkKwhLKsQEBNmS4zNYhgfPRSCi2kCiOLjigOTpag4gJgQxgQobGPC30thf9GMluLt0eBo/HkmhRwTtseHTeOPLz5m3PnnYOI1RhYS7KwHTZahSsX3L6uSjJgSQlwOISRrRbOUcoFKAN/3GagQUREhBJqbY0X7+vvTy+a1jCQJNDXFjtywTBZFiALkUvk777wT99xzDzzPy60xGY3i0ksvxXve8x6ceOKJaGpqQiwWgyTx7kaaH4YoRJPxQwcimi0/CPCL3tfx4tA7M7ZbGWrAJzveh5iSu7bwOkNE5cbrDB2JNKFIvVzlWZPTBgNFAcRYm+LwYeIxKA4kioKCYOpjJoQJk46ZEEBMDiyWl5muMZIQ0GUVupL72RLj6tXIkoSYrCOmhBGRdUhTBipLe7YPEc0OQxSGKDM64YQTptw/OuxSTa0VQmDHjh0l6YsWL4YoRJPxQwcimqsXBt/GL3pfn7FNvRrBpzvOQbMe53WGiMqO1xmaKzkfqiiSPM3sh/x2fmO60GP6GRMzHUOLzWyvMbkZUCpCigJNVnNLf43rIyrriCkhRGUdyoQbhFlHhWh5Y4hS3RCl5muiTPWDIMatS7pcflCIiIiIFouzGo9FQgnjp90vwwv8KdsMO1nct/8pfLLjfVgTba7wCImIiGbmBQEM1wHgVHsotIQEACzPgeU5AAxospyfpaJChoS0ayLtmgCAiKwhqoQQU0LQJLmojorvj9VRISKi8qv5EAWYebZJKWaiMIghIiIiKq2NiQ7ElBAe7noepj/1B1CGb+OHnc/gYyvfg/cm1ld4hERERETVZXsebM9DyjahSBJ0WUVIUaFIMrKejaxno89KQpeU3AwVJYSwrEKSUFjKnnVUiIjKb1GEKAw5iIiIiBaftZFmXL/2fGzpfA4jbnbKNm7g45GDL8BRHLy/bUOFR0hERERUG1zfh+tbyDhWbjk5RUVIVqHKMizfhWWnMWCnoUgSYnJuhko4X0dFlgVkWWYdFSKiMqn5EOXmm2+u9hCIiIiIaJ5a9ARuOOp8PNj5PA5bw9O2++n+VzBkZfDhNacVrQ9OREREtNx4QQDDsWE4NgQAXVELxeld38ewn8Wwk4UkBKJyCDFFR1TWIUtSPlAZXfaLdVSIiEqh5gvLE1USC8sTTcZCrERUCpbn4CeHXsTuTM+M7U5pXItPrn8fjLTD6wwRlQxfzxBROVXyGqPJCnRFRUhWIImx4vMCQFjREZd1xJQwC9MTLTEsLM/C8kRERES0xOmyik92vA//cfi32Dqyf9p2Wwf340BmABtjHdiU6MAKva6CoyQiIiKqbbbnwvZcpACokpyfpaLk6qi4FrKuhZ7ROipqGDE5lAtcxhWmzy375eeX/aru8yEiWgwYohARERFRRchCwmVtp6NOjeDp/jenbTdopfEr6y38auAttGgJbEp0YGOiA01avIKjJSIiIqptju/BsT2kkXudpSu5WSqapOTqqFgpDCAFVZJzhellHRFZhxCALEuQZbCOChHRLNR0iPLCCy9g8+bNhW1VVbF582ZomlbFURERERHRfAkhcH7ziahTIvj3w79FgJnfrPfZSTzZvwNP9u9Ae6geG+Md2JRYjTo1UqERExEREdU+L/CRdWxkHRuSENBlBVp+lorjexiyMxhCBrKQEJV1xNRcqCIJUaijEgRAEHDZLyKiiWo6RNm5cydeeukliHxx0Q996EMMUIiIiIiWgFPrj0JcCeGRg7+GE3izOqbbHEa3OYzH+7ZhdbgJG+O5GSoxJXTkg4mIiIiWCT8IYLgODNcBAOj5Oiq6nPsYMOkaSLoGBICooiOqhBCTQ1AkCUKMLfvFOipERDk1HaIYhgEgl4ILIXDSSSdVeUREREREVCrHxNpw3drz8GDn80h75pyO7TQG0GkM4LHe13BUpAUbE6txQnwlIrJeptESERERLU6W58LyXADj6qgoChQhI+1aSLsWejCCkKwiroQRU3RoEuuoEBGNqukQRdeL3wS3tbVVaSREREREVA7toQZ8bt0FeHJwO14fPAD/CMt7TRQA2Jvtw95sH35++FUcHV2BTYnVOD62EiFZLc+giYiIiBapQh0VO1dHJZQPVFRJgek5MD0HfRYKdVTicgghWZumjorPQIWIloWaDlGampqKtl3XrdJIiIiIiKhc6tQIPnPs+5FyTLw+eACvDuzDnlTvnPvxEeCdTA/eyfRAFhKOjbZhU2I1jo21QZNq+mUvERERUcV5gY+MYyHjWPk6KrlARZtYR0WSEJN1xJQwIrIOSSBfR0VmYXoiWhZq+t3kMcccAwCFmij9/f3VHA4RERERlVFcDeHs1uNwdutx6BoYwvZkJ7Ylu3DQHJxzX17g4630IbyVPgRVyDg+1o6NidU4JtoKRZLLMHoiIiKixStXR8WG4doQADRZRUhRoMkq4PsY8Q2MOAaEELnC9EquML0iSYXC9ADrqBDR0lTTIcoJJ5yAuro6JJNJAMBLL72EP/iDP6jyqIiIiIio3BJqGO9tPBbvbTwWQ3YG21Nd2JbsRI81Mue+nMDDtlQXtqW6oEsqToivxMZ4B9ZFV0AWUhlGT0RERLR4BQAsz4HlOQAMaLJSKE4vQ0LaNZF2c/XsIrKWK0yvhKBJclEdFd8fq6NCRLSY1XSIIkkSfvd3fxcPPvggAODFF19ET08PWltbqzwyIiIiIqqUBi2Kc5qOxzlNx6PfSuYCkWQnBuz0nPuyfAdbR/Zj68h+hGUNJ8ZXYVN8NdZEmiHlZz8TERER0Rjbc2F7LlK2CUWSoMsqQooKRZKR9WxkPRt9VhK6pORmqCghhGUVkpT7bA9gHRUiWtxEUOMLFnZ3d+PSSy+FaeYS7osvvhjf/va3qzsoWrIGBtLL4g4JTcstY7Ir1Y0AQF82Cb+2LwVURUIIJBKhon3JpMn1bomoZOZznQmCAD3WCLYlu7A91YlhJ7ugMcSUEDbGO7Ax0YGOUGNhOVkiWhr4eoaIymm5XmNkIaApKkKyClWWITD2+kmRJMTk3AyVcL6OyijWUSGaOyEEmptjRfv6+9PL5t+QJAk0NcWO3LBMaj5EAYCf/OQn+MpXvlJ4M/uZz3wGt9xyC9/cUskxRCGabLm+ISCiylnodSYIAhwyh7At2YntqS6k8stLzFedEsHGRAc2JVajTa/ja06iJYCvZ4ionHiNAQQAXVELxenHByqSEIjKIcQUHVFZhywVL6fKOipER8YQhSHKrNxzzz341re+hSAIIITAySefjC9+8Ys4/fTTqz00WkIYohBNxjcERFRupbzOBEGAA0Y/tiW7sCPVhaxnL2hsTVoMG+OrsSnRgRY9saC+iKh6+HqGiMqJ15jJtHwNlZCsQBpXg04ACCs64rKOmBKGwkCFaFYYojBEmdHLL79c+P7ZZ5/FPffcA8/zAOR+eNauXYszzzwTGzduRFNTE6LRKBRlfqVe3v3ud5dkzLR4MUQhmoxvCIio3Mp1nfEDH3uzfdiW7MKbqYOwfGdB/a3QE9gUX42NiQ40atV7AU9Ec8fXM0RUTrzGzEyV5PwsFQWKJBc9pksKYmoYMTmEkFz8eV5u2S8/v+xXJUdMVHsYojBEmdGGDRumXEJh/LBLscSCEAI7duxYcD+0uDFEIZqMbwiIqNwqcZ1xfQ+7Mz3YnurCW6lDcAJvQf2tDDVgU6IDG+MdSKiREo2SiMqFr2eIqJx4jZk9WUjQldwsFU0qDk1USUZMCSEmhxCWNQjWUSEqYIhS3RBlflM2qmDiD8T44GS5/LAQERER0fwokozj4ytxfHwlHN/FrvRhbE92YlfmMLzAn3N/h8whHDKH8IveN7Am3IyNiQ6cGF+FmBI68sFEREREy5QX+Mg6NrKODUkI6PllvzRZgeN7GLIzGEIGspAQlXXE1BCisg5JCMhy7isIcp8FctkvIqqURROizDTbZKEzURjCEBERES0fqqRgY6IDGxMdsDwHO9Pd2JbsxO5MD3zM/XXhAaMfB4x+/HfPVqyLrMDGRAdOiK9CWNbKMHoiIiKipcEPAhiuA8PNLbk6Gqjo+WW9kq6BpGtAAIgqOqL5WSqKJEEIAUnKfR7IOipEVG6LIkRhyEFERERE5aDLKk6qW4OT6tbA8Gy8mTqI7cku7M32zjlOCQDsyfZiT7YX/3n4VRwTbcXGxGocH2uHLqvlGD4RERHRkmF5LizPBTCujoqiQBEy0q6FtGuhByMIySriShgxRYcmKZCksUCFdVSIqBxqPkT54Q9/WO0hEBEREdEyEJY1nFa/DqfVr0PaNbEjdRDbk504YAzMuS8fAXZlDmNX5jAUIeHYWDs2xTtwbKwNqlTzL8GJiIiIqsrxPTi2h7Sdq6MSygcqqqTA9ByYnoM+a6yOSlwOIZSvoyLLEmR5fB0Vn4EKES1IzReWJ6okFpYnmoxFEomo3Gr9OjPiZLE92YXtqS4cMocW1JcmKTg+1o6N8Q6sj7ZCkeQSjZKIZlLr1xkiWtx4jamcXB2VXKCiyQoExpb4lyUJMVlHTAkjIuuQWJielhAWlmdheSIiIiKimlWnRvC+puPwvqbjMGinsT3ZhW2pTvRayTn3Zfsu3kh24o1kJ0KSig3xVdiU6MC6SAskIZVh9ERERERLR66Oig3DtSEAaLKKkKJAk1XA9zHiGxhxDAghcoXplVxhekWSCoXpAdZRIaK5YYhCRERERDRLjVoM72/egPc3b0CvlcT2ZCe2Jbsw6KTn3JfpO9g6sg9bR/YhIus4MR+orAk3Qwhx5A6IiIiIlrEAgOU5sDwHgAFNVgrF6WVISLsm0q4JAIjIWq4wvRKCJslFdVR8f6yOChHRVBiiEBERERHNwwo9gRUtG3F+84k4bI1gW7IT25NdGHGzc+4r61l4ZXgPXhneg7gSxsb4KmxKrMbKUAMDFSIiIqJZsD0XtuciZZtQJAm6rCKkqFAkGVnPRtaz0WcloUtKboaKEkJYViFJgCTlZgSzjgoRTYUhChERERHRAggh0B6qR3uoHh9s2YQucxDbkp3YkTyItGfOub+Ua+DXQ+/g10PvoF6NYFNiNTbGO9Cq1zFQISIiIpoF1/fh+hYyjgVZCOiKCl1WocoyLN+FZacxYKehSBJicm6GSjhfRyW37JfMOipEVMAQhYiIiIioRIQQWB1uwupwEy5ecTIOZPuxLdWJHamDMDx7zv0NO1k8O7ATzw7sRLMWx8ZEBzbFV6NZj5dh9ERERERLjxcEyDo2sk6ujspooKIrClzfx7CfxbCThSQEonIIMUVHVNYhs44KEeUxRCEiIiIiKgNJCBwVbcFR0RZc0noK9mZ6sT3VhTdTB2H57pz767dTeLr/TTzd/yba9DpsTKzGpngH6rVoGUZPREREtPQEAEzXgek6gIVcHRVFRUhWAEhIuQZSrgEBIKzoiMs6YkoYiiRNqKPCQIVoOalqiHL77bcXvm9tbcX1119f0fN/9KMfxc6dOwHk7hrcsWNHRc9PRERERMuDLCQcE2vDMbE2/G7rqXgn04PtyU7sTHfDCbw593fYGsHhvhE80bcNq0KN2JTowInxDiTUcBlGT0RERLQ0FeqoAFAlOT9LRcnVUXEtZF0LPaN1VNQwYnIIIVkpClRyy375+WW/qvt8iKg8qhqi/OAHPyis67xhw4Y5hSj/9//+X+zduxdALgB59NFH5zUGrmlIRERERJWkSDI2xFdiQ3wlbN/FrnQ3tie78HbmMLzAn3N/B81BHDQH8Vjv61gbbsamxGqcEF+FqKKXYfRERERES5Pje3BsD2nkboDRldwsFU1ScnVUrBQGkIIqyYgpIcTkEMKyBiEAWZYgy2AdFaIlqiaW85rPRWXPnj146623AGBBBTaFELyoEREREVFVaJKCTYnV2JRYDdNzsDN9CNuSndiT6YWPub9G3W/0Y7/Rj5/3bMXR0RZsjK/GCfGVCMlaGUZPREREtDR5gV+ooyIJAT2/7JcmK3B8D0N2BkPIQBYSorKOmBpCVNYhCVGooxIEuc88uewX0eJXEyHKfDEAISIiIqKlIiSrOLluLU6uW4usa+HN9EFsS3ZhX7Zvzn0FCLA704vdmV78Z8+rOCbaio2J1Tg+1g5NWtRvAYiIiIgqyg8CGK4Dw3UAoBCo6HLuNVXSNZDM11GJKjqi+VkqiiRBCNZRIVoK+A6KiIiIiKjGRBQdp9cfjdPrj0bKNbAjeRDbU13oNAbm3JcX+NiZ7sbOdDcUIeO4WBs2JVbjmGgbVEkuw+iJiIiIli7Lc2F5LoCxOiohRYUsJKRdC2nXQg9GEJJVxJUwYooOTWIdFaLFjCEKEREREVENiythvKfxGLyn8RgMOxlsT3Zhe7IL3dbwnPtyAw87UgexI3UQmqRgQ2wlNiU6cHS0FbKQSj94IiIioiWsUEfFNiELCSFFha4oUCUFpufA9Bz0WbklXGOKni9MP7mOSi5IGUtTioOVyUHLzO2JqNQYohARERERLRL1ahRnNx2Ps5uOx4CdwvZkF7YlO9Fnp+bcl+27eD15AK8nDyAkqTghvgqbEqtxVKQF0gJqDhIREREtR17gI+NYyDhWvo5KLlDRZAW272LQdjGIDGRJQkzWEVPCiMg6JAHkXnpN9/prfq/L5ha8zBzUMKSh5Y4hChERERHRItSkxXFu8wk4t/kE9Foj2JYPVIaczJz7Mn0Hr47sw6sj+xCVdZwY78CmRAdWh5sgGKgQERERzUmujooNw7UhAGiyipCiQJNVwPcx4hsYcQwIIRCWNUgQkCAgBCAg5YMVadx+AUnkvx+3LfKPS/nt8Sa+hKtMUBNM8/h0IU3usan6IqolDFGIiIiIiBa5FXodLmipwweaT0S3NYxtyU5sT3Yh6Rpz7ivjWXh5eDdeHt6NhBLGxkQHNsVXoz1Uz0CFiIiIaI4CAJbnwPIcAAY0WSkUp5chIetaJTuXEGOhSu5/gCSksf2jj4mxcEZgXEAzrt3EoEaIXLhTfL7J559mZPN+TuPDFS57RtXCEIWIiIiIaIkQQmBlqAErQw34UMu70GkMYFuyCztSXch4c3+DnnQNvDD4Nl4YfBsNahSbEquxKdGBFXpdGUZPREREtPTZngvbc5GyTSiSBEWSIYBCoDE6YyS3jQl/Tr1vVBAE8BDAK2NYMD6EGR+8TBnICIHcfJrxAY80Fu5AQBIotMkFPsXnG7/NZc+oWhiiEBEREREtQUIIrIk0Y02kGb/TejL2Z/uwLdmJHamDMH1nzv0NORn8auAt/GrgLbRoCWxKdGBjogNNWrwMoyciIiJa+lzfh+v7JelrNJCYMYARKCwHNv5xiNFZK/lQZrTduGNG+UEABAG8kox6qucxFqaMzYLJhS8S8oHLlMue5b8/wrJnY0FV/nyLZNkzTgivLoYoRERERERLnCQE1kVXYF10BS5tOxV7Mj3YluzCW+lDsH13zv312Uk82b8DT/bvQLtej435QKVejZZh9ERERER0JEFhBkowfiJFyUwdxuQeKeybdrbMzEHOaC/50cML/LI8h/HPRcoHLtMteyZEvs34WTYTlkObuOxZYSbOEevTzD2k4bK61cUQhYiIiIhoGZGFhGNj7Tg21g7H9/BO5jC2J7uwM90NN5j7PYXd1jC6+4bxeN82rA43YWO8AycmViGuhMsweiIiIiKqhgCjMyjKE9IA0wU104cxRbNujhjkjFv2DLmgppzLno0tZzbNsmfjA5kplj0rXv5MQBYCjufmQ5pc4CMElxCrFIYoRERERETLlCrJOCG+CifEV8H2XexMd2N7shNvpw/Dn8e7405jAJ3GAP679zUcFWnBpkQHToitQkTRyzB6IiIiIlpKKhPUzC6gmWnZs9GAY6Zlz4IggFfKZc8EEIEGADg6tgIRVc/tLOeUHSpgiEJERERERNAkBe9KrMa7EqtheDbeSh3C9lQn9mT6EMzjzdm+bB/2Zfvwc2zF0dEV2JhYjQ2xlQjJahlGT0RERER0ZEGh7kgVlz2bNsCZIciBVPrB0qwxRCEiIiIioiJhWcOp9Ufh1PqjkHEtvJk6iG3JTuw3+ufcl48A72R68E6mB/8hJBwbbcPGRAeOi7VDk/h2hIiIiIiWjnLNphFCIBxphCQYplQD37UQEREREdG0ooqOMxqOxhkNRyPlGNie6sL2ZBe6zME59+UFPt5KH8Jb6UNQhYzjY+3YmOjAMdE2KJJchtETEREREREtDEMUIiIiIiKalbgaxnsbj8V7G4/FkJ3JByqdOGyNzLkvJ/CwLdWFbaku6JKCDbFV2JTowLroCsi8w46IiIiIiGpEzYQoIyMj+NnPfjan9uPN5djp+iAiIiIiotlp0KI4p+l4nNN0PPqtJLblZ6j026k592X5Ll5L7sdryf0IyxpOjK/CpvhqrIk0QxLiyB0QERERERGViQhyi7RVxYYNGyCEQBAEEPN4czR+6PM5fnw/Qgi8+eab8+6DloaBgTR8v2r/JCpG03LLZexKdSMA0JdNwq/epYBqnBACiUSoaF8yaaKKvz6IaInhdWbpCIIAvVYS21Kd2JbsxLCTXVB/MTmEExOrsCmxGh2hxgW95qfljdcZIionXmOIqNyEEFjTnKuJcnRsBSKqjoGBDHzfr/bQKkKSBJqaYlU7f83MRFnoL5b5Hs83YkREREREpSGEQGuoDq2hOlzQvBGHzCFsS3Zie+ogUq4x5/7SnomXhnbjpaHdqFMi2JjowKbEarTpdXwdT0REREREFVETIQrfABERERERLS1CCKwKN2JVuBEXrTgJB4wBbEt2YkfqILKeNef+Rtwsnh/checHd6FJi2FjPBeotOiJMoyeiIiIiIgop+ohCqc2EhEREREtbUIIrI00Y22kGZe0noy92T5sS3bhrdRBmL4z5/4G7DSeGXgLzwy8hWYtjo5wI1aGGrAq1IgVegKKJJfhWRARERER0XJU1RDl5ptvrubpiYiIiIiowiQhYX20Feujrfhw26nYnenBtmQn3kodghN4c+6v306h305h68h+AIAsJLTqdVgZaih8tegJFqgnIiIiIqJ5YYhCRERERERVIQsJx8XacVysHY7v4u30YWxLdeHtdDfcYH5FMr3AxyFzCIfMocI+VchoD9WjPdSAVaEGrAw3oFGNcVlhIiIiIiI6oqov50VERERERKRKCk5MdODERAcsz8HOdDe2JzvxTqYHPha2BLATeDhgDOCAMVDYF5JUtIfqsTLUiFXh3IyVhBJmsEJEREREREUYohARERERUU3RZRUn1a3BSXVrYHg23kwdxPZkF/ZmexcYp4wxfQd7s33Ym+0r7IvKem4JsHyosirUgKgSKtEZiYiIiIhoMWKIQkRERERENSssazitfh1Oq1+HtGvizdRBbEt24YDRX/JzZTwLb2cO4+3M4cK+OiVSCFVGv0KyWvJzExERERFRbWKIQkREREREi0JMCeHdDevx7ob1SDpZ7Mv2F+qfdJvDcOdRmP5IRtwsRlJZvJk6WNjXpMWKQpX2UD1UiW+tiIiIiIiWIr7SJyIiIiKiRSehRgpLfgGAH/jos1I4aA4WgpUec2TB9VSmMmCnMWCn8UayEwAgALToiVx9lXyw0hqqgyykkp+biIiIiIgqiyEKEREREREtepKQ0BqqQ2uoDqdhHQDA9T30WCM4aA6h2xzCQWMIfXay5OcOAPRaSfRaSWwd2QcAkIWEVr2uMFtlVbgBzVoCEgvXExEREREtKgxRiIiIiIhoSVIkGavCjVgVbizss30X3fmZKoeMIRw0hzDkZEp+bi/wCzNiRqlCRnuoAStD9VgZzs1aaVCjEAxWiIiIiIhqFkMUIiIiIiJaNjRJwdpIC9ZGWgr7DM8uhCqjwUfSNUp+bifwcMDoxwGjH8hnKyFJzc1WGVe8PqGEGawQEREREdUIhihERERERLSshWUN66OtWB9tLexLuUZRqHLIHELWs0t+btN3sCfbiz3Z3sK+qKznaquEG3OzVkKNiCp6yc9NRERERERHxhCFiIiIiIhogrgSxvHxMI6PrwQABEGAESeLg+NClW5zCJbvlvzcGc/Crsxh7MocLuyrUyKF2SqrQg1oDzUgJKslPzcRERERERVjiEJERERERHQEQgjUa1HUa1FsTHQAyAUrA3Yah8whHDQHccgcwmFzGG7gl/z8I24WI6ks3kwdLOxr0mKFJcBWhhrQHqqHKvEtHhERERFRKfEVNhERERER0TwIIdCsx9Gsx3FS3RoAgB/46LWSY8uAGUPosUbgIyj5+QfsNAbsNN5IdubGA4EVemIsWAk3oFWvgyykkp+biIiIiGi5YIhCRERERERUIpKQ0BaqR1uoHqdhHQDA9T0ctkbGFa8fRJ+dKvm5AwTosUbQY43g1ZF9AABZSGjT69CeXwZsZbgRzVocEgvXExERERHNCkMUIiIiIiKiMlIkGR3hRnSEG4GG3D7Lc3DYGsbBccXrh5xMyc/tBT4OmkM4aA7hlfw+Vchoz89WWZWvs9KgRiEYrBARERERTcIQhYiIiIiIqMJ0WcXaSAvWRloK+wzPztVXyc9WOWQOI+UaJT+3E3g4YPTjgNEPDOX2hSS1sATYaPH6uBJmsEJEREREyx5DFCIiIiIiohoQljWsj7ZifbS1sC/lGvklwIbyBeyHYHh2yc9t+g72ZHuxJ9tb2BeTQ4VQZTRYiSh6yc9NRERERFTLGKIQERERERHVqLgSxvHxMI6PrwQABEGAYSc7Vrg+/2X7bsnPnfZM7Ep3Y1e6u7CvXo2MFa4PNaA91ICQrJb83EREREREtYIhChERERER0SIhhECDFkWDFsXGRAeAXLAyYKdwcDRUMYZw2BqGG/glP/+wk8Wwk8WO1MHCviYthlWhxkKw0haqhyrJJT83EREREVE1MEQhIiIiIiJaxIQQaNYTaNYTOLluLYBcQfk+K5kLVoxcfZVeawQ+gpKff8BOY8BO4/Xkgdx4ILBCT4wtAxZuwAq9DrKQSn5uIiIiIqJyY4hCRERERES0xMhCQluoHm2hepxevw4A4PgeeqzhwmyVg+YQ+u1Uyc8dIECPNYIeawSvjuwbG49ely9e34hVoQY0aXFILFxPRERERDWOIQoREREREdEyoEoyOsJN6Ag3AQ25fZbnoNsaLipeP+RkSn5uL/Bx0MwFNxjeAwDQJAXten1R8foGNQrBYIWIiIiIaghDFCIiIiIiomVKl1UcFWnBUZGWwr6sZxWFKofMIaRcs+Tntn0X+41+7Df6C/vCkoaV4XqsDDViZSj3Z0INl/zcRERERESzxRClxh0+fBi7du1Cd3c3RkZGAAB1dXVoamrCu971LrS2tpblvJlMBlu3bsW+ffuQTCahKAqam5tx/PHH44QTTuDdYURERERES1RE1nFMrA3HxNoK+1KOMVa4Pr8cmOHbJT+34dvYnenF7kxvYV9MCY3VV8n/GVH0kp+biIiIiGgqVQlRXn755Wqc9oje/e53V3sI6O/vxy9/+Uu88MILePHFFzEwMDBj+9WrV+MTn/gErrzySjQ2Ni74/Dt37sTmzZvx+OOPw3GcKdusWLECV111Fa6//npEIpEFn5OIiIiIiGpbXA1jgxrGhvhKAEAQBBh2sjhkDuGgOYhDxhC6rWHYvlvyc6ddE7vS3diV7i7sq1cjhWBl9EuX1ZKfm4iIiIhIBEEQVPqkGzZsqLmZDEII7Nixo2rnf+ONN3DHHXfg5Zdfhu/7cz4+Go3iy1/+Mj7xiU/M6/xBEGDz5s34zne+A9ed3RuflStX4s4778RJJ500r3PWooGBNHy/4v8kKk7TZADArlQ3AgB92ST8yl8KaJEQQiCRCBXtSyZNVOHXBxEtUbzOEC0NfhBgwE7lghVjCN1mLljxgrm/v5mPZi0+FqqEG9Cm10OVcq97eZ0honLiNYaIyk0IgTXNjZCEhKNjKxBRdQwMZOb1OfJiJEkCTU2xqp2/qst58ZfJmG3btuHFF1+c9/GZTAZ//ud/jjfeeAO33nrrnI+/7bbb8OCDD87pmEOHDuHaa6/FPffcUxOzeIiIiIiIqHokIdCiJ9CiJ3By3VoAuYLyvVYSh/KzVQ6ZQ+ixkghQ+veC/XYK/XYKrycP5MYDgRV6Au2hBqwKN+I4uQ3t4XrIklTycxMRERHR0lXVEKVWZqPUapizdu1avO9978OZZ56J9evXo6mpCbquo6+vD6+++ioeeeQRbN26teiYhx9+GE1NTfjCF74w6/Ns2bJlUoASiURw9dVX45JLLsHq1auRyWSwa9cuPPDAA3juuecK7UzTxM0334yf/exnaG9vX9DzJSIiIiKipUUWEtpD9WgP1eP0+tw+x/fQYw3j4Lji9f12quTn9hHgsDWCw9YIXh3ZBxwGFCGhLVyP5lAcCSmCRjWKJi2OJi2GsKyVfAxEREREtPhVLURZaHAxPoCZTV9zbV8tiqLg0ksvxRVXXIEzzzxzyjbxeBxHH300Pv7xj+PHP/4xvv71rxfVL/ne976HSy65BMcee+wRz9ff34877rijaF9rayvuvffeouMbGhrQ0dGBCy64APfddx/+9m//tvD3ODw8jNtvvx133XXXfJ4yEREREREtI6okoyPchI5wU2Gf5TnoNodz9VXywcqwky35ud3AR1d2EF3ZwUmPhWUNTVoMTWocjVos970WQ6MWgyZV9f5DIiIiIqqiqrwS/OEPfziv415//XX8wz/8AyzLApALQ1RVxZlnnolNmzZh3bp1iMfjiEQiyGazSKVS2Lt3L7Zt24aXXnoJjuMUwpRwOIw/+qM/qpl6HpIk4cMf/jC+8IUvYO3atbM+7qqrroKiKPjyl79c2Oe6Lr7zne/g29/+9hGP/+53vwvDMArbsizj7rvvnjGAuf7669Hd3V303/EXv/gFtm/fjo0bN8567ERERERERACgyyqOirbgqGhLYV/WtfKF63P1VQ6aQ0i7ZtnGYHg2uoxBdBmTA5a4Ei4EKk3qWMDSoMUgCy4PRkRERLSUVaWw/Hw8/PDD+Ku/+it4nocgCJBIJHDTTTfh8ssvR11d3RGPTyaTePTRR7F582aMjIwAyM36+MpXvoKrrrqq3MM/Is/zIMvyvI+/9tpr8dJLLxW2o9Eofv3rX0PTpp+S3t/fj/PPP79oFstnPvMZ/Pmf//kRz5fNZnHxxRejt7e3sO+DH/wgvvOd78zzGdQGFpYnmoxFEomo3HidIaLZSjpGrr6KOYxD5iAOGkMwfefIB5aJAFCvRscCFi2GJi2ORjWGOjUCqUaWsCai8uJrGSIqNxaWX8aF5WfrZz/7GW699dbCL59TTjkF3/nOd9DU1HSEI8ckEgl89rOfxWWXXYabb74Zv/3tb+G6Lr72ta9B0zRcfvnl5Rr+rCwkQAGAj370o0UhSiaTwc6dO/Gud71r2mOeeOKJogBFCIHPfOYzszpfJBLBxz/+cWzevLmw75lnnkEmk0E0Gp3HMyAiIiIiIppZQg0joa7ChvgqALnVCYadDA7mlwAbLV7vBF5FxhMAGHIyGHIyQKan6DFZSGhUo/lwpXiJsJgcqpkaoUREREQ0s5oPUbq6ugoBihACGzduxP33349QKHTkg6fQ2NiI++67D9dccw22b9+OIAhw22234YwzzsDq1atLPPrK2bBhw6R9fX19Mx7zxBNPFG2ffvrpc/o7+NjHPlYUoti2jWeffRYXX3zxrPsgIiIiIiKaLyEEGvLLam1K5N7L+EGAATuVC1aM3KyVw9YwvKCyd2p6gY8+O4U+OwWgu+gxTVLQqMYmzGDJhS0scE9ERERUW2o+RBlfs0OWZXzzm9+cd4AyKhQK4Zvf/CYuv/xy+L4P0zSxefNmfPOb3yzFkKtiqr+T8bVOJrJtGy+88ELRvukK2U9nzZo1aGtrw+HDhwv7nnrqKYYoRERERERUNZIQaNETaNETOKUuV2/SQ4CsYuBQdhj9Zgp9ZhKHMyMYtNMVm7Uynu27OGzlwp2JwrJWqLsyOouFBe6JiIiIqqemX4HZto3//M//LExzPuOMM3DccceVpO/jjjsOZ555ZiFI+K//+q/C0l6L0aFDhybta2xsnLb9vn37YNt20b7TTjttzuc97bTT8POf/7ywvWvXrjn3QUREREREVE6KkNARbUJHdGxJ6GTShO/7SLkmBuwUBuw0Bp107s/8l4/K1zMwPBtd3iC6zKkK3IfyNVeiRUuENahRKNLClogmIiIioqnVdIjy+uuvwzCMQohyzjnnlLT/s88+uxCimKaJ1157De9+97tLeo5KefnllyftW7NmzbTt9+zZM2nf+vXr53zeicfs3bt3zn0QERERERFVgxAiX2cljHXRFUWP+YGPYSeLQTsXrAzYqULIMuxkqzLelGsi5ZrYh+KlmwWAOjUyNmtFHVsirE6NssA9ERER0QLUdIgy+kH/aD2Utra2kvbf2to66XyLMUTxPA//9m//VrRv/fr1WLVq1bTH7N69u2hbluVJfx+zMfG/SSaTQU9Pz7z6IiIiIiIiqhWSkNCYX0brmAmPub6HISdTmMEyOntlwEkj7ZoVH2sAYNjJYtjJYvcUBe4b1Gjx8mD5kCWmsMA9ERER0ZHUdIgyPDxctO26bkn79/1cYcHRF40jIyMl7b9SfvKTn6C7u7hQ4aWXXjrjMb29vUXbLS0tkOW5T/9euXLlpH2LOUQRQmA5vIcovFESAkAupFwGT5vmaaqfDQFgWfxjIaKK4HWGiMqt1NcZVVawQq7DilDdpMcszxlbGsxKYcBJY8DKzWQxfWde51sIL/DRb6fQb6cmPaYKuajmSpMWR5MeQ5MaQ0TRKz5WosWKr2WIqNymvM4ILJubIar9PGs6RFFVtWh7fAHzUhjtb3Smy8TzLQaHDx/G3/3d3xXtq6urwzXXXDPjcdls8fTzWCw2r/NPdVwmk5lXX7WgsTFa7SFUVNTT4CNAQg5VZb1nWrziiVC1h0BESxyvM0RUbuW7zoTQgviUj2QcC31mEn354vZ9ZrJQ6N72K1/g3gm8aQvcRxQNzXoCK8JxtIQSaA7l/mwJxaHLi++9M1Gl8bUMEZXbcvscs5pqOkRZsSK3Ju1o0vT000/jxhtvLFn/Tz/9dNF2S0tLyfquBNd18Sd/8idIpYrvKPrjP/5j1NfXz3jsxBBF1+d3l9FUx03sm4iIiIiIiICoqiOqtuCoePF7zyAIMOIY6B8fsBi5PwesNLzAr/hYs66NA24/DmT6Jz2WUMNoCcXRnA9VVuRDluZQnAXuiYiIaMmp6RBl7dq1he+DIMBrr72G1157DSeffPKC+37ttdfw6quvQgiBIMjdgX/UUUctuN9K+uY3v4lXXnmlaN8555yDq6+++ojHGoZRtD3fECUUmnxnBUMUIiIiIiKi2RNCoF6LoF6L4JhEcd1JL/AxbGXQa6aKQxYzhSErXZX55EnHQNIxsDtVvEy0gECDHkVLqHj2yopQHA16FJKQqjBaIiIiooWp6RBl06ZNWLlyJbq7uyGEgO/7+LM/+zM8+OCDR5xpMZPh4WH82Z/9WWEZLwBob2/Hpk2bSjTy8vvRj36ELVu2FO1ra2vDHXfcUfU14oiIiIiIiKg0ZCGhKRRHUygOoLgmpet7GLDS6DOS6B23NFifmULSMabusIwCBBi00hi00tg5Uly3UxYSmvRYYUmwlnACzXruzzo1zPexREREVLNqOkQBgN/7vd/D9773vcILqj179uDaa6/FXXfdhXXr1s25v3379uHzn/889uzZU5iFIoTARz7ykVIPvWz+8z//E9/85jeL9sXjcXzve99DY2PjrPoIh8NF25ZlzWsspmlO2heJRObVVy0YHMzA95d+bRBNy02xz2RtBAiQzJrwg6X/vGl+BCav55tKmqyiQ0Qlw+sMEZXbUr7OhKFjjdKCNbEWYFzJSstzcsXt7dzXoJ0rbj9gp2F4dsXH6QU+es1c2DORKuSxwvZaLP8VR6MWQ0TWGLBQzVvK1xgiqg0CQH1z8Weuy+VzTACQJFHVGjA1H6LceOON+Pd///fCbBQAePvtt3HZZZfhmmuuwRVXXIGjjz76iP3s3bsXjzzyCLZs2QLHcQr7hRBob2/HH/7hH5btOZTSM888gy996Uvw/bE1cUOhEL773e9iw4YNs+5nYtAx3xBlquMWc4gSBEFhebelrPAc838ul+dN8zTFm9YA4M8MEZUOrzNEVG7L8DqjSQra9Hq06fWTHst6Vj5UGR+w5EIWJ6hOgfseawQ91sikx0KSWghXGgsBSwyNaowF7ql2LMNrDBFV2FTXmWD5XGeq/TRrPkQJh8P4xje+gT/8wz+E67qF/Y7j4P7778f999+Po48+Ghs3bsS6desQj8cRDodhGAZSqRT27t2L7du3Y8+ePQDGfrBGZ6FomoZvfOMbk2Zm1KJXXnkFX/jCF4pCIFVVceedd+KMM86YU18Tg450Oj2vMU11XDRavVSQiIiIiIiIZhaRdUTCOjrCTUX7gyBA2jUx4IyFKqMBy5CTqUqBe9N3cNAcxEFzcNJjMTk0KVxp0uJoUKMscE9EREQlU/MhCgCcddZZuOuuu/CFL3wBrusWZqSMBiK7d+8uhCRTGZ/IjT9WVVXcddddOOuss8o4+tLYtm0b/tf/+l9FBeElScLf/M3f4Pzzz59zfytWrCja7uvrg+d5kOW5vdDs7u6etG9i30RERERERFT7hBCIq2HE1TCOirQUPeYHAUacbC5YmbBM2LCTqcqyRWnPRNowsd/on/RYvRpBo1q8NFiTFkO9GmGBeyIiIpqTRRGiAMAHPvAB/PCHP8SXv/xl7N27F0KIonVRZ5q6NHH91CAIsG7dOtx+++045ZRTyjXkknn77bdxww03TJr1ceutt+J3f/d359XnxCXQPM9DT08PVq5cOc0RU5sYokSjUbS1tc1rTERERERERFSbJCHQoEXRoE1eecD1PQw7mUKwMuCM1WBJuZPraFbCsJPFsJPFnmxv0X4JuefRpMXHhSy5r7jCAvdEREQ02aIJUQDg1FNPxb/+67/iH//xH/Hwww+jvz93t8nEQGUqoyFLc3MzPvnJT+Jzn/scNE0r+5gXav/+/bjuuuswPDxctP+WW27BlVdeOe9+169fP2nf7t275xyiTJwBtG7dunmPiYiIiIiIiBYfRZLRrCfQrCcmPWb77oT6K6nCcmHVKHDvIyiMZaKxAvf5JcLU3CyWOjWCmBKCxICFiIhoWVpUIQoAaJqGm2++GTfeeCMef/xxPPPMM3jttdewZ8+eKWejCCFw9NFH4+STT8a5556LD37wg1CUxfG0u7u7cd1116Gvr69o/+c//3lcd911C+r7qKOOgqZpsO2xF62vvvoq3v/+98+pn9/+9rdF28cdd9yCxkVERERERERLhyYpaAvVoy1UP+kxw7Mn1V4ZsNMYdNKwfXdyZ2U2U4F7AYGYEkJCCSGh5JY8SyhhxJXcnwk1973KWixERERLzuJIE6agKAp+53d+B7/zO78DADBNE4ODg0gmk8hkMohGo0gkEmhsbEQoFKryaOeuv78fn/3sZ3Hw4MGi/ddffz1uvvnmBfevaRrOOussPP3004V9L7300pz66OzsnLSc13zqsxAREREREdHyE5Y1dIQb0RFuLNofBAHSnjlhBks+bKlSgfsAAVKugZRr4CCGpm0XljTE1dCUAcvo9yFJ5bJhREREi8iiDVEmCoVCWLly5ZyXo6pFw8PDuO6667Bv376i/VdddRW+9KUvlew8F154YVGI8sorr6CzsxOrV6+e1fE//elPi7Y1TcM555xTsvERERERERHR8iOEQDwfQqydosB90skWlgQbP4ulWgXuxzN8G4Zlo9dKTttGEdJYyKJOFbaE8suHSRUcOREREU2npkOUF154AZs3by5sq6qKzZs3L4paJvOVyWTwuc99Drt27Sraf9lll+HWW28t6bkuvPBCfP3rX4fjOAByd/s88MAD+LM/+7MjHmsYBv75n/+5aN+5556LaHRykUEiIiIiIiKiUpCEQL0WRb0Wxfpoa9FjXuBjaNzslbEC92mkXKNKI57MDXwMOhkMOhlgmmEJIL98WLgQKCXyS4jllhPLPaZKNf2xDhER0ZJQ079td+7ciZdeeqkwzfVDH/rQkg5QLMvCjTfeiNdff71o/0UXXYS//uu/Lvl03+bmZlx11VV44IEHCvseeOABfOQjH8GJJ54447Hf/va30dPTU9gWQuCmm24q6fiIiIiIiIiIZksW0qwK3A+Oq70yYKeQrUKB+yMJAKRcEynXBGZYPiwkqYVwpThsCSGhRBBXQwhLGpcPIyIiWoCaDlEMI3dLRhAEEELgpJNOqvKIysd1Xfyf//N/JtUlOffcc/Gtb30Lslye4nQ33ngj/uVf/qXwd+26Lm666Sbcc889OOaYY6Y85v7778cPfvCDon0XXXQRNm7cWJYxEhERERERES3EkQrcj9VfGVfkvkoF7ufC9B2YlnPE5cMmLhkWz4csifyMFi4fRkRENL2aDlF0XS/abmtrq9JIyu/v//7v8eSTTxbtUxQFa9euxV133TWvPjdu3IhLLrlkxjYtLS340z/9U3z9618v7Ovu7saVV16Jq6++Gpdeeik6OjqQzWaxc+dOPPDAA3j22WeL+qivr8ctt9wyrzESERERERERVVNY1rAq3IhVUxS4NzwbSddAMl9UPukYSLpm4fuUa8D0nSqNfHbcwMeQk8HQEZYPi+aXDyuu1xIqCl80Lh9GRETLUE3/9mtqairadt3avgNkIcYvjTXKdV386Ec/mnefl19++RFDFAC45ppr8M477+Chhx4q7MtkMrj33ntx7733znhsKBTC3//932PlypXzHicRERERERFRrRFCIKLoiCg62lA/bTvbd8cFLAZSromkk839mQ9g0q5ZuYHPQwAg7ZpIuyYOHWH5sPi4UCUXsITGvlfCCMtcPoyIiJaWmg5RRpeTGv3l29/fX83hLGlf/epX0dzcjLvvvhue583qmPb2dtx55504+eSTyzw6IiIiIiIiotqkSQqatDiatPi0bbzAR7owg8VE0h0LWVL58CXpGvACv4IjnzvTd2DaDvrs6ZcPk4U09WwWJYx4vn5LTAlB5vJhRES0SNR0iHLCCSegrq4OyWTul/NLL72EP/iDP6jyqJYmIQRuvvlmfPCDH8TmzZvxxBNPwHGmnpLc0tKCq6++Gtdddx2i0WiFR0pERERERES0uMhCQp0aQZ0aAcJTtwmCAIZvF5YJS7rmuO/HlhOr9eXDvFksHwYAsXy4MhqyjAYsXD6MiIhqjQiCIKj2IGZy22234cEHHwSQq5Hyi1/8Aq2trVUe1dKXTqfx6quvYv/+/UilUpBlGU1NTdiwYQNOPPHEJTs1d2AgDd+v6X8SJaFpMgBgV6obAYC+bBJ+bV8KqIqEEEgkQkX7kkkTNf7rg6pMkWSEVQ1B4CPr2LzG0Ix4nSGicuN1hpYSx3dzM1ccY2zJsAlhS9o1sRR+unVJHbdkWAQJJVSY4VJLy4fxGkNE5SaEwJrmRkhCwtGxFYioOgYGMvD92p7BWCqSJNDUFKva+Ws+ROnu7sall14K08ytH3rxxRfj29/+dnUHRUsWQxSiyfiGgOYqpoUQUTUI5N7MBgiQsS1kHWtJvJmn0uN1hojKjdcZWm78/PJh081mGf3erfHlw2ZDFlJ+Nks+ZMkHLOPDlnIvH8ZrDBGVG0OU6oYoNT8vsr29HV/+8pfxla98BUIIPPbYY7j99ttxyy23VP1OAyIiIhqjSBLq9AgUKRfUJpQw3MBD1rMR00IIqxrStgnTre0lKIiIiIgWO0lISKgRJI6wfJjpO4VQZXx9ltHQZbEsHzbsZDHsZGdsF5NDiKuhsYBl3LJho99z+TAiIprKovjtcMUVV2BkZATf+ta3EAQBfvjDH+K1117DF7/4RZx++unVHh4REdGyF1V1RDUdAgKyJKFVr0Ncyd2Nl3JN9FlJwAfq9AgiqoeUZcDxvSqPmoiIiGj5EkIgLGsIyxpaUTdtO8d3c8uGjQ9bxgUuSddE2jVqfsZx2jOR9kx0Y3jaNrqkFM1imSpsidTA8mFERFRZNb+c18svv1z4/tlnn8U999wDz8t96CKEwNq1a3HmmWdi48aNaGpqQjQahaLMLxt697vfXZIx0+LF5byIJuPUdJqJLCTUhcJQ83ftxZQQWvU6KFLxcgl+AAw7GQzaaXj5ZSNMz0HaMgvbtHzxOkNE5cbrDFF55ZYPs4pmsBTCFtdE0ski6Zpwg8V/E83Y8mHFS4a1JupQp0VQp+WWDzMzLq8xRFQyXM6LNVFmtGHDhikT/vHDLsUdAEII7NixY8H90OLGEIVoMn7oQNMJqxriWig3+0RIaNETqFNz60UEAeC6uTfJsixBknK/q13fx4CdKiy3ECBA1rGRsZdG8VOaH15niKjceJ0hqr7xy4cVwpZ84DIWthgwfLvaQy0JRUgIyzrCsoqIrBdm/URkDWEp/6esFR6LyBpCsgaJs1yIaAoMUVgTZVYmvrgdH5zwhS8REVHlSEKgTo9Ak3MvIyKKjna9vjD7xPMCeN7YCznX9SGEgKJIUCQJraE6NGhR9FpJZFwLUVVHWFGRdiwYztJ400xERERExWa/fJhXCFlSk+q1mIXAJajxW3DcwM+P1ZjTcSFJzQcseiFoKYQvE0KX0T9V1nIhIiqrRXOVnWm2yUJnojCEISIimp2QoiKhhyEgIITACi2Oei0KYGz2yVS/VoMggON4kCQBWZagSQo6wo3IuBb6rCQs30VCCyOiaEjZJmzPrfAzIyIiIqJaoEoyGrUYGrXp7zj2gwAZ1yyq0ZKb0WIWzW5xFuHyYabvwPQdwMnM+pjcrJfikIWzXoiISmdRhCgMOYiIiKpLEgIJPQxdVgEAYVlDW6gOWv6ut4mzT6bj+wF834MsS5BlgaiiIyK3YMTJot9JAQAaQlFYnoO0bcJdJlOTiYiIiGj2JCEQV8OIq2GsmqbN6PJhqaIaLbn6LKlxAYzhLf6Z0LlZLyZSrjmn4+Y66yUsa1CFXJJl9YmIFpOaD1F++MMfVnsIREREy5ouK0joYUhCggDQrCfQoEYhxOjsE3/ONzx4ng/PAxQlVy+lXosgoYYxYKcwZGegyyq0sALDdZCxTdZtIiIiIqI5Gb982Ar9yMuHTQpbxi0nthiWD5uP+cx6kYU0KWThrBciWupqPkQ588wzqz0EIiKiZUkASOhhhBQNAKBLCtrDDdDnOPtkJrl6KYCiyJCEyBenj6LfSiHlGogoGsKKioxtIeNYC31KRERERERFZr18mGcWlgnLLRlmjtVuyX/Z/uJbPmyuvDLPehm/j7NeiKhW1HyIQkRERJWn5WefyCJXLL5Jj6FRjUNawOyT6QQBJtRLkbEyXA/DjaDXTsL0HMS0EMKqhpRlwvKckpyXiIiIiGg2JCEQV8KIK+EpHxdCIB7XYXoOko6BrGuhL5lG1rVgeDayng3DG/e9P7rPhhcsj+VrOeuFiBYzhihERERUIADE9FyBdwDQJAVtoXqE87VQfD+A65bnjd5YvZRcmBJWNKxVmpF0DPTbKcAH6kMROL6LlGXCWQZ3+hERERHR4iCEQFjREM6/jm4KEke86SgIAjiBh+z4gGXcn0Zhu/hx018eNxWVa9bL2Pc6Z70Q0awwRCEiIiIAuaUM6kKRwuyTBi2KZi0OSQgEQa6Oie+Xfy3o3DJhY8XnE2oYMSWEISeDATsNVVLQGI7BdG2kWC+FiIiIiBYpIQQ0oUCTFNSr0Vkf5wc+DM+B4VmTghfOeuGsFyIqPYYoREREhJgWQlTVAeTClDa9vjAbpZyzT2aSC20AWc4Vn2/SYqhTIui3kxhxDIQUDbqiIutYyNjWEiz1SUREREQ0mSQkRBUdUUWf9TETZ71MN/OFs14464WIJmOIQkREtIwpkoQ6PQJFkgEAdWoYK/S6wh1VrluZ2SfTGa2/IoSAokhQJAltoXrUqzH02UlkXQtRNYSwoiFtmzDc5fEmj4iIiIhoLjjrpTxKNetFl3L/bTRJgS6p0CQZmqQW9uf+LN6W8isIEFH5LYkQZWRkBDt27MDQ0BBGRkaQyWQQjUZRV1eHhoYGbNy4EYlEotrDJCIiqilRVUdU0yEgIEsS2vR6xPJ3s/k+4Lq1U3MkCIKi4vMhWcHqcCNSrok+KwnHBxJ6BBHVQ8o2YHu1M3YiIiIiosVqIbNexgctnPUyZr6zXiaShTQuVFHHhS3Fgcv4/RPDmPH7uDQZ0fQWbYiyb98+bNmyBc8//zz27t07Y7EuIQTWrVuHc845B5/+9KexZs2aCo6UiIiotshCQl0oAjU/+ySuhNGqJyBLuTuZqj37ZCZjxedz9VLiSghROYRhJ4NBOw1IQEMoBstzkLLMZXMHHBERERFRrRg/66VOjcz6uLnOehn9frm+5vcCH9n830EpKEKeMWwpDmMmhjaTj+GSZbSULLoQ5fDhw7j11lvx9NNPIwiCGcOTUUEQYPfu3dizZw9+9KMf4YILLsBf/MVfoK2trQIjJiIiqh0RVUNMC+VmnwgJraEE4koYwOjSWR4WQ512z/PheYCi5OqlNGpR1Clh9NtpDDsZ6LIKLaLAcGykbZP1UoiIiIjo/2fvvuPkqOs/jr9nZvuVXC49IaEkQARCCEJoIlU6QmJoggJSxB8dRbqABRRBwIIIKCggTVqUEhFEegoQQoCEGkJNIaRc3TLz+2P3Nju7s3u7e3u3V17PxwNy892Z73x3727ubt77/X7QyzHrpbriTkLxRELNifaK9Oc3rHTYkjsbJmt5MsuXDt6Cpl8Byx3YUEcG1danQpTHH39cl156qdauXZsOT0r5BuoIXZ588knNnTtXP/3pT7Xvvvt213ABAOg1LMNQfTCigJX80V/jC2pksEG+1OyTZCjR96KGzHoplpkMhQYHIlrRvlZN8XZF/EGFfAE1x9rUEqvMO7QAAAAA9A7dNuvF9g5gBuqsl3LEnIRiiYRUoZWWi5kNk69+TPasGkIZlKrPhCiPPPKIzj33XNl28mKV+YVezGwUwzDSxziOozVr1ujss8/Wr3/9ax144IHdM2gAAHqBsC+gumBy9olpGBoWrFdD6g+MvjT7JJ/seikB06cx4UY1x9u1on2t2u246gJhhf0BNbW3qT0Rr/aQAQAAAFQRs176nqgdV9SOq6kCfRlS7myYzJkvppUT0hRawsxnmIQy/VyfCFHmzZun888/X7Zt54QnlmXpq1/9qiZNmqQJEyaovr5ekUhELS0tWrdund599129/vrrevnllxWPx11him3bOv/88zVixAhtt9121Xp6AAB0C9MwVB8MK2j5JUkRK6ARoQYFUrVQEglHiUT/eSdVdr2UGl9QEWuY1sRbtDK6TrKlhlCNoom41kVbFbf7z3MHAAAA0L0qOesle8ZLR0DQnvp3/ccxtdu8CazSHEntqdd4XQX6M2TkzHwJmF7LmBuSZgAAmZZJREFUmfk9QpjcgMaX+psdvUevD1Fs29bll1+uWCzmmkkSCoV04okn6ogjjtCwYcM67eeLL77Q3XffrVtuuUVtbW2Skhe/WCymyy+/XDNnziQxBAD0GyGfX3WBsEzDkCFpaLBejYEaSf1j9kkh2fVSGvwR1fvCWhVt0qpokwKWT0PCdWqNJ+ul2P31hQAAAABQdeXMesnUMQMmGazEcgKXzLAlO4jJPCazHZXlyFGbHavYrCNTRm4AY/k0eHlEIV9Am9QO115jttIoNVbkfOic4RSzFlYV3X///broootkGEZ62a5NN91Uf/zjH7XBBhuU3N8nn3yi//u//9PixYvTfRqGoV/84heaPn16pYePPuaLL5pk2736W6IiAoFkov32us/kSFrRspabiMjLMAzV14dcbWvXthW1lCJ6niFD9cGQQr6AJClk+TUq1KCAmXzfRH+bfdIZw5Asy1Kq9ItidkIr29dpbbxVUvKX3eZou5pjlSmeiPJwnQHQ3bjOAOhOXGPQlziOkwxTnIzQJZEbtqwPXbza14c2MadCRU9Qsu9vvLcOHTUwVlcyTUNDhtRW7fy9fibKgw8+6NoeP3687rjjDg0aNKis/saMGaPbb79dRx11lN5///307JMHHniAEAUA0KcFLJ8GBcMyDVOGpMZgnYb4a2UYHbNP7AH3h1zHrJuOeil+09KocIMaEjVa3r5GbYmYagOhZL2UaJva4qxXDAAAAKD/MgxDQcuvoPwV6c92HMU6mRHjNRvGuy2uOKFM0f70wX+0+9At0jVP0X16dYjS1NSk+fPnp2eMmKapK664ouwApUN9fb2uuOIKHXnkkZKSCez8+fPV1NSk2trqJVoAAJTDkFQXDCucmn0SNH0aGWpQKFULxbYdxeMDZ/aJl/X1UpJhStjya8PIUK2NtabrpQwKRhTxx7WuvU0xm1/cAQAAAKAzZkcoY/klhbvcn+3YnjNfvGbJZC5v5tXebseVcPr338LvNy/Ttg0bV3sY/V6vDlFee+01VzH4yZMna/LkyRXpe/LkyZoyZYpeeeUVSVIikdBrr72mXXbZpSL9AwDQEwKWpfpgRJaRXK9qcKBGQwP1MlOzTxIJe0AsU1is5HJm64vP1/vDqvWF9WUsWS/Fb/rUGK5VW6peSmKAzdwBAAAAgGoyDVMhK6CQFahIf4l0KBNT1E54zJbJ2E7EFXO82zv6sNV7/kY0JG0cGV7tYQwIvTpEWblypWt7t912q2j/u+22WzpEkaQVK1ZUtH8AALpTbSCkGn+yOKHftDQq2JCejcLsk8KS4ZJkWcni80MCtRrki2hldK3WxFoV8gUU9PnVEouqOdrWi35NBgAAAAAUyzJMha2AwhUMZdrtWKqOTOGlyfLVk4naifQxXQllDttgJw0O1FTkeaGwXh2irFq1SpLSxd9HjhxZ0f6z+/vyyy8r2j8AAN3BZ1oaFAzLZ1qSpAZ/RMOC9TJTdb7icWafFKOjToxhGPL5TPlMUyNDDWrw12pFdK1a4u2q8QcV9vnVFG1Xazxa7SEDAAAAAKrIMkxFrKAiVrDLfTmOkwplOq8nE3XiCgR8akvENDo8WDuN2FSTAhvKtnnzZE/o1SFKIuFej9znq+xwLSt586mjuHz2+QAA6G1qA0FF/EEZMpI3/YMNqvElf3lj9kl5HMdRLLa++HzI8mlsuFFN8XataF+rqB1XfTCsiD+gddE2RRPxag8ZAAAAANDHGYYhn2HJZ1qqUeFQxjAMjRvaKNMwtUntcEX8QX3xRXMPjRS9OkQZMmSIpPUhx7Jlyyraf0d/HTNdGhsbK9o/AACV4jNNDQpG0rNP6n1hDQ/WyzKTtVCYfdJ164vPJ+ul1PqCqrGGaXWsWV9EmyRTGhyqUXsipnXtbf2+QCEAAAAAAJDMag+gkOxQ44UXXqho/y+99JJruyO0AQCgN4n4g2oM18pnWrIMU6PDgzUq3CDLNOU4UjSaIECpoETCTr+mhiENDtRo48gwDQ7UyJAUtPwaEqlVXSAkQ0a1hwsAAAAAALpRrw5RJk2alJ6F4jiOZs+eraVLl1ak76VLl+rFF19M928YhiZNmlSRvgEAqATLMDU4XJO+WV/rC2mjyDDV+UKSkjf7YzGWouwu8bitWMyW40iWaWp4sF4b1QxTrS/5+Yj4gxoaqVPEX5kChQAAAAAAoPfp1SFKY2Ojtthii/RyW/F4XBdddJHi8a6tRZ5IJHTJJZe4+pk4cSLLeQEAeo2wL6AhkVoFTJ9Mw9DIUIPGhAfLl5p9EosllEgw+6S7ddRLiceTYUrA9GlMeLDGhocomPrc1AXCGhKpVdDq1aukAgAAAACAMvTqEEWS9t9/f9f2vHnzdPrpp6utra2s/trb23XmmWdq9uzZMgwjHdAcdNBBlRguAABdYhqGGkIR1QfDydkOvqA2igzTIH9YkpRIJG/qO+QnPcq2HVdwFfEFtGFkmEaGGuQzTfkMSw2hGg0O1chn9vpfrwAAAAAAQJF6/V/53/nOdzRixAhJSoceTz/9tA444AD9+9//lm0XV9TVcRw98cQTOvDAA/Xkk0+6Hhs+fLiOOeaYio8dAIBShHx+DQnXKWj5ZRiGhgfrNTbcKL9pZcw+oZh5NWXXSxnkD2vjyHANCdbKMAwFLJ+GhOtUHwzLNKiXAgAAAABAX9fr150IBoM677zzdM4558gwjHSQ8umnn+rMM8/U0KFDtffee2urrbbS+PHjVVdXp0gkopaWFq1bt07vvfeeFi5cqP/85z9auXKlnNRbdzNnoZx33nkKBFjPHABQHYYM1YfCCll+SVLI8mtUqEEBM/ljOpFwCE96mXjclmFIlmXJNA0NDdSpwVejFe1rtTbeqrAvoJDPr+Zou5pj7dUeLgAAAAAAKFOvD1Ek6YADDtAHH3yg3/3ud+kgRUrOLlmxYoXuvvvuTvvIDE8ynXbaaTrggAMqP2gAAIoQtHypWQumDElDgnVq9NfKMCTHUaoWB2t39UbJz09CpmnIskz5TFOjwg1qSCTDlNZEVLWBkML+gJqibWqLx6o9ZAAAAAAAUKI+EaJI0qmnnipJuuGGG9JLeGWGKZ3JDE8cx5FlWTr11FP1f//3f90wWgAACjMk1QXDCvuSMyGDpk8jQ4MVShUnt21H8TizT/oC23Zk28kwxeczFbb8GhcZonXxVq1oXyfZ0qBgRBF/XOva2xSzE9UeMgAAAAAAKFKvr4mS6dRTT9Xf/vY3bbjhhnIcxzW7pLP/JKWP2WSTTXTHHXcQoAAAqiJg+TQkUpcOUIYEajUuMkwhy5eefUKA0vfYtqNodH3x+TpfWBtFhmtYsF6mYchv+tQYrtWgYEQW9VIAAAAAAOgT+sxMlA5f/epX9fjjj+u///2v7rzzTs2dO1ft7Z2vNR4MBrXDDjvo6KOP1m677dYDIwUAIFddIKSIPyhJ8puWRoUGK5yqhcLsk/4hkbBl25JlmTJNQ42BGtX7wvoiuk6rYy0K+fwK+nxqiUXVHG0Ti7UBAAAAANB79bkQpcMee+yhPfbYQ7FYTG+++abeeOMNffnll1q7dq2am5tVU1Oj+vp6NTY2asstt9QWW2whn6/PPl0AQB/nNy3Vh8LyGZYkqcFfo2HBOpmpGQnxuC3b5nZ6f9Exo8gwkkt8+UxTI0KD1BCo0fL2tWqJt6vGH1TY51dTtF2t8Wi1hwwAAAAAADz0+VTB7/dr8uTJmjx5crWHAgCAp9pASBF/QIYM+U1LI4KDVONLzkZh9kn/5jiOYrH1xeeDpk9jw41qjrdreftaRe246oNhRfwBrYu2KZqIV3vIAAAAAAAgQ1Vropx11lm666679P7771dzGAAAdAufaWpIuFY1/qAMGar3h7VheGg6QKH2ycBh28kwpaNeSo0vqI0iwzQiWC/LMOUzLQ0O1aghFJFl9KmSdQAAAAAA9GtVnYny+OOPa9asWZKkoUOHaurUqdpxxx21ww47aNy4cdUcGgAAXVLjD6omkAxPLNPUiOAg1flCkiTbluLxRJVHiGpIJGwlEpLPl6yX0hCoUZ0vrC9iTVodbVbQ8isQ8ak1HlNztE22wxJvAAAAAABUU69YzstxHK1YsUKPPvqoHn30UUnSiBEjtMMOO6T/GzNmTJVHCQBA5yzD1KBQWH4z+SO21hfSiOAg+czk7AJqn0DqqJci+XyWLNPU8GC9Gvw1WtG+Vk3xNkV8gXS9lJZYe7WHCwAAAADAgNUrQhQjVVTXyXi35eeff66ZM2dq5syZkqTRo0enA5Udd9xRI0aMqMpYAQDIJ+wPqC4QSs4+MUwNC9ZrkD8sqaPQeEJMLEAHx5GrXkrAtDQmPFit8aiWta9Rux1XXaqezrr2VrVTLwUAAAAAgB5X9RDFcZx0iNLxb+ZjHT755BM9+OCDevDBByVJ48aNc81UGTp0aM8NGgCADKZhaFAwooCV/LEa8QU1KtiQnn2SSDhKJKh9Am+27ci2E7KsZJgS9gW0kW+Y1sRatTK6VrKlhlCNonZc69rbFLdZCg4AAAAAgJ5S1RDl+uuv1+zZszVnzhy9++676fZiQpUPP/xQS5cu1X333SdJ2njjjdOBytSpU9XY2NgDzwAAMNCFfH7VB8MyZMgwDA0P1KshEJHE7BOUJhm2JdL1Ugb5w6rzhbQq1qxV0SYFTJ+GhGvVGo+qiXopAAAAAAD0CMNxesdf4KtWrUoHKnPmzNF7772Xfiw7TOmQPfTM/SZMmJBe+mv77bfXoEGDumfg6Fe++KJpQNQqCAQsSdLb6z6TI2lFy1puxiEvwzBUXx9yta1d25ZzDR5oTMNQfTCsoOWXJIWtgEaGBimQqoXC7BN0hWFIlmUpNZlJcdvWiuharY21SpIcOWpO1UvpD9+JXGcAdDeuMwC6E9cYAN3NMAyNG9oo0zC1Se1wRfxBffFFs2x7YNx3ME1DQ4bUVu38vSZEyfbFF1+4QpX3338//VipoYphGNp8883TM1W233571dZW70VH70WIAuTiD4JcQcun+mBYpmHKkDQ0WK/B/hoZRsfsE3tAvz6onI56KR2/+rQlYlrRvlYtiagkKeHYaoq2qS0eq+Iou47rDIDuxnUGQHfiGgOguxGiEKIUZeXKlZozZ046WPnggw/Sj3mFKl5Pq2M/0zT1la98JR2qbLfddopEIt03ePQZhChALv4gWM+QVB8MK+QLSJKCpk+jwoMVZPYJuplpGvL5zPT2unibVrSvVSxVHyVmJ7SuvTW93ddwnQHQ3bjOAOhOXGMAdDdCFEKUsqxcuVKzZ89OhypLlixJP1ZqqGJZlrbaaivdfffd3TZe9A2EKEAu/iBICqRmn1hG8kb2kGCtGv11Mpl9gh5kWaYsK/n7i+1Iq1P1UhJO8hfntkRMTe1t6e2+gusMgO7GdQZAd+IaA6C7EaJUN0SpamH5rhg6dKgOPPBAHXjggZKkFStWpAOV2bNn68MPP0zvaxiGZ5H6jh9m8Xhcr732Ws8NHugFDCN5AbKVnJ0lrxtuFf59r7juSjspv5OiuxmSaoNhRVKzTwKmTyNDDQqnaqHYtqN4fGD80oLqSyRs2XYyTDFNQ42BGtX7wvoiuk6rYy0KWX4FIz61xKJqjrb1i3opAAAAAABUU58NUbINGzZMBx10kA466CBJ0rJly9L1VObMmeMKVST3bBXeGYCBpqNgsWEaMh0nWbjY8a411PN6yzg6UZWAqcQ+u9xpRwe5nxPDMHJanUJbffQy6zctDQpF0rNPBgdqNDRQn559kryh3UefHPqsjplPhpFc4stnmhoRGqTBgRotb1+r5ni7avxBhX0BNcXa1BqLVnvIAAAAAAD0Wf0mRMk2YsQIHXzwwTr44IMlJUOVjpkqjz76qFpbW6s8QqB6jNQNYcVtKZGQ0R6Vkfcut+HxoUfQUSD7cDoezHd8UblJdh9exxXoqNLZTIX7647oyGNlw1J7SPWT25FlGZ0EI2WcvEB/hU7lPQ6n4IHFBD61gZBq/EFJyTBlZLAhPRuF2SfoDRzHUSyWSBefD5g+bRBuVHO8XSva16rdjqs+kJxFtS7apmgiXu0hAwAAAADQ5/TbECXT+++/nw5Q5syZkw5QHMfxvDkIDBRGIiG1R2U0t8noxvXze913WSnf9wWDI6+AyfNgSVm36rP3N/I2dtqU+5hH0lTMU84cg+F+wDGy0oj2uGt3R8b618N1eiN3XPnGUmYG5v3pLOWrzr2vzzRVH4jIZybDxoZARMODg2QapiRHiYQjw5D8fsuzt2QI453eFAp88oVS7vb+McMHlWXbjmw7ka6XUuMLKmIN05pYi1bG1kmSBodq1J6IqSnapvgAWTMXAAAAAIBK6JchypIlS1z1Ub744ov0Y5nBCQEKkOQ4jux4Yn1DwZvZnXzfFAodyn6ohCCgGKXceXZyPihbX73iGIYhJ+5eDsiMJlxLIZb83HICKGN9e8a20/GhYSjn6yC9n5Hblvl1mBXuODI89kueI+IPqiYQlCFDPsPSiPAg1fnCyeMcR4mEnTN876dWfojTHToPaHJ3qHTgU8x40DWJhK1EQvL5kvVSGgIR1fuT9VK+jDYraPkVCPvUFk+GKTafCKBfq8yfOqV3UpXfdwqetONvv9xHTNOQ02uWtM3GNTqNl6LH9PxL3Xs/ub3116T+dRurdz6Z3jmqfqJbX9z+/5nrX9//fU+/CFGWLl2q2bNnp4OTFStWpB9z3eTLKDCf2d7Y2Kjtttuu5wYM9DJOwpbd1g/XzC9z+bFOdy14B720E5SyIlnOTf/Oe8vzUJ798jUbhmS5z50O3fLMXjE6/p9vSJl/lRSYudEty5x5tFmmpfpIrXyOLUVbVWcFNMofkRlrlxSVHY3JicVlGpmhjJHOcCRjfTiTDmg8whzPNrn7S/eT+nnVESBltKnguTyec97PbaFXxfOIIvfrHSr1x2+x4VBp/ZR0ZEn92LYjx3GSM1NMU8NDgzQ4UKsV0bVaF2tVxB9Q2BdQc6xdzbH2os5ZcHS99CZDOSq1DGJl9+yicn9ulHOqHrxEVO1q1Lcug8jg9Qa6ZIjSWy9ifLFhIOg/X+de1xifz+zF1xgAfY337zISCw30jD4Zonz00UfpWSZz5szRsmXL0o8VCk06Hhs6dKimTp2q7bffXlOnTtX48eN79gkA6BmFZpGUMxmlnINL7rv3MQxDMt0jtdti5f1B4LXkV8em6zEj6zGPPnJSm+yZJR3/ZO6Xk/QoEgypJlQjwzBkGYZG+GtVb4WSDyZsJdqjUkfx+ALPubv+BCypXyPruZYS+Chru9jAp+Mfw3AHPunxeHzO84V6nS6RV5pK3dA18o23x3TtnJZlyLL8GusfopZEu5a3rVVbIqp6K6SaYEBN0Xa1J2IVPWepuPEAFFD0t0EJv+90ZaZt3kOy3yCRZBRzjk538e67hA5Se2XdZWiLKXvF0orqP/eHe6kqvcDdHU5309NyvDrurudSlU9Nqc+vuC6KPsBx5NhZF5Ts7RxdvAB19fpVzPW8N+mWYXXSaYGHi/r5VmndespK/Lyu+IHlK+qUZRZmrSInGJUMU46/XfIHZZr8stFT+kSI8sknn7hCk88++yz9WDGhyciRI9OByfbbb6+NNtqoR8cPAEjpuGZn/ULieDW6Hqs80zQ1qLZefsMvuz2qGjOgUWZEvrijhFqVaGuX3RbLChKyAp/MjzNDGyPrsdTH63OH7NCis2NTj3o9lsk1w6eXBz4ldZxvKk3GB/lm1eQLZnLSuYybC56BT1Zj3lAooyHf+PK+UB5BYr598y2J59FdQpLps2RapmpkaqPAYK2Jt2pFdJ1kGxrkCylm+rSuvU1xJ5HbT3anxQRiRTT3iFJuzBY6ppwbziXcaO76TWbva2vpfwzn66eY4wu8cMX0V8zzK6ZfjzbvL8ESb5p0Guh1dpO/SASH3Sa5PKk7MM5enhToz7jN1r0Mw5DT4q6ZyDUGQCUZhiGnvV2OYcppj0m11R7RwNIrQ5TPPvvMtTzXp59+mn6smNBk9OjRrpkmY8eO7dknAADo1cLBkGpramUYhkwZGmFFNMhMzj5xErYSza1yUvVPsm8QdvP7ycqTJ5hZf9/ecP+b3iXPzf107bDsft19GEbWOTM+7jTwKUXeIiw5H3RJf7654EhKGIbMgF+G31KDpHonrC8TrVoZa1ZA0hBZaovF1dzaItvppjnheb4eDEl2i9/VZrbHSrufzE0KoDTF1rEqq78idyzx29Yp9gCvMM1QcnnSjB3sWLy3vtG0+vrzD8UK6rReZGVPVuoD3XjO3tBtBWaeIFdJb2rogVN2p6r/AOgbsyCK/tnbfQPoR+css+OOwwwjOcPNKrg3ukmvCFGWLVvmCk0+/vjj9GPFhCbjxo3T9ttvnw5NRo8e3bNPAADQJ5imqfraOgX8AUlSxPRrpFmjgJH8LcRuiyrRmq9GRC/mpP/n+rhXBj6F5JtN4tmUO8Mkd5dCMyM6nzWRc2PE85ASZowo31Ms8jx5h1xgdkvWCRPxhGQasoIBmT5LQ8ywBgUCWpFo1ppEVEF/QEGfX63tbWppa834o6mT51msfEGHYeQu5usU2L9aigjuypn8UnDHkia/VGgZhlJuoHR1qYScXcp7DuV/pZRxQ7/A12WXvmKLfd172bdFX5FcntTdZreXuTwpAGQxDEOBiPsNIfEWrjEAKscwDCmRkCxSlGqoaohyySWXaM6cOVq6dGm6rZjQZKONNnLNNBkxYkTPDhwA0OcEA0HV19alZ58MtSJq7Jh9YttKNLfJiXe2lBG6VaGbqEUsU1TpP1H785+8cUmG3ycrHJRhmRqugOodSyvsZjXbMQVlyR+IqKmlWW3tbaWfoKRALBkEBRyPGw9deNe554P9+ZMKAAAAAOgWVQ1R7rvvvuR6blnBScd2x78TJkxwzTQZOnRoVcYLAOh7DMNQXU2dQsGgJCls+DTKql0/+6Q9pkRLGTeJgT7OicUVj8VlBv2ywkGFDEtjrXqtM6NakWhR1JTqa+sUCYe1rrlJsVh28flCned84PFYBkO57+53nN43EwUAAAAAMOD0iuW8MmebSNJmm22mqVOnaurUqdpuu+3U2NhYzeEBAPqogD+g+to6maYpU4YazZCGmOFkYG87SrS0yokx+wQDm90ekx2NywoHZAYDqjMCqrX8+tJp1xd2q2T5NLi+Qe3RqJpampRI8D0DAAAAABg4ekWIIiUDFJ/PpwMPPFD77LOPtt9+e9XX11d7WACAPsgwDNVGahUOJZfrChqWRlm1ChnJH3t2NKZESzvvcgc6OI4SLe1KtMVkRYIy/T41GiENMoJaabdotd2mYCCgYKBRLW2tam5pZo1vAAAAAMCA0GtCFMMwlEgkNHPmTM2cOVOGYWizzTbT9ttvrx122EHbbbedGhoaqj1MAEAv5/f7VV9bL8s0ZUgabIY1LDX7RI6jeHObnFi82sMEeifbVqKpVbbPkhUJybJMjbBqNNgMabndoiY7qkgorHAwpKaWZrW2tVZ7xAAAAAAAdKuqhygd72LMXtLLcRwtWrRIixcv1h133CHDMDRhwoT0Ml/bb7+9Bg8eXLVxAwB6n9pIrSLhsCQpYFgaadUoYiSLVduxuBLNbcw+AYrgxBOKr22WGfTLDAUVMC1tYNWp2YxpRaJFbYqrrqZWkVBYTS1Nao9Gqz1kAAAAAAC6RVVDlH/+85+aPXu25syZo7lz5+rLL79MP9YRqkjJQMVxHL399tt65513dOedd0paX3C+I1ihdgoADEw+n0+DautlWcli8Q1mSMPNiMzU7JNES7vsaAlFsQFIStVLaY/JDAdlhQKqMfyKWPVa67Rrhd0qWdKgukGKxmJqal6nOPVSAAAAAAD9jOH0ogWtFy9erDlz5qRDldWrV6cfyw5VvNo32WQTV6gydOjQHhk3+o8vvmiSbfeab4luEwr5ZZqG3l75oZz2qFasWql4a1u1h4VeyjAMRSJ+V1tLS6zX1EOoidSoJhyRJPkMU6OsGtUYAUmpd9M3t0oD4Psa6HamISsclBlIze5yHH1ht+pLu022kt9jrW1tam5tlm3bJXXd268zAPo+rjMAuhPXGADdzTAMjR41QlYgoI3rR6h2yBCtWdOiaHRgvJHNNA0NGVJbtfP3qhAl26JFi1yhypo1a9KPFROqbLTRRumaKttvv72GDx/eMwNHn0WIAuTqrX8Q+CxL9XX18lnJSZX1ZlAjzBpZqZ8DiZY22e3MPgEqzbBMWZGQDF9y5lfMSWiF3aq1druk5O9lza0tamltKb7PXnqdAdB/cJ0B0J24xgDoboQohChFW7RoUXr5r3nz5pUcqowbNy49S2Xq1KkaMWJEzwwcfQYhCpCrN/5BEAlHVBupkZScfTLCrFGdmTn7pE0q8Z3wAEpjBHyywkEZpilJanXiWm43q9WOS5IStq2m5ia1R9s776sXXmcA9C9cZwB0J64xALobIQohSlk6Cs93hCovv/xyyaHK2LFjXct/jRo1qmcGj16LEAXI1Zv+ILBMS/V1dfL7kuOpMwMaYdbIZyRv4iZa22W3UeAa6ElmKCArFJBSv2Ottdu1wm5RzEkGmbF4XE3NTYrF888M603XGQD9E9cZAN2JawyA7kaIQohSEY7j6K233tKcOXM0e/ZszZs3T+vWrUs/3lmoYhiG3nzzzZ4bMHolQhQgV2/5gyAcCqs2UiPDMGTK0AgrokFmSJLkJGwlmlvlJJh9AlSFkaqXEkxeKxzH0Sq7TV/Yrel6KW3t7WpqafKsl9JbrjMA+i+uMwC6E9cYAN2NEKW6IYqvameuMMMwtMUWW2iLLbbQcccdJ8dx9Oabb6ZDlZdfftkzVOEHGgD0bqZpqr62TgF/crmuGtOvkWaN/EayHkOiLSq7tfPlggB0I8dRoqVNifaofOGQDL+lIVZYg8ygVtgtWmu3KxQMKhQMqqW1Rc2tLfwOBgAAAADoE/pNiJLNMAxtueWW2nLLLXX88cfLtm29+eabmjVrlu688061tram9+OPeADonULBoOpq6tKzT4ZaETVmzj5paZMTHxjvugD6hISteFOLDH+yXorPMjXKqtVgM6wVdrOa7Zgi4YhCobCam5vU2s4sSAAAAABA79ZvQ5QOa9euTc9GmTNnjt555510aOI4jmuZLwBA72Aahupq6xQMBCVJYdOnUWatAqnZJ3Z7VIkWZp8AvZUTiysei8sM+mWFgwoZlsZa9Woyo1qeaFFUCdXV1ikcjqipeZ1i8Xi1hwwAAAAAgKd+F6KsW7dOc+fOTYcmixcvdoUmAIDeLRgIqK62XmZq9skQM6xGM5ScOWg7ydonzD4B+gS7PSY7GpMVCsoMBVRrBFRj+fWl064v7FbJkhrqGxSNxWQ77UrYfG8DAAAAAHqXPh+iNDU1ad68eZo9e7Zmz56txYsXpwuWeoUmzDwBgN7JMAzV1dQqFEwu1xUyfBpp1SrUMfskGlOipU0iDwf6FkdKtLYr0R6VFQnJ9PvUaIQ0yAjqC7tVq+02BQMBBYNhtbW3qbW9VXKS9ZDyvgEmq72cywJvrgEAAAAAFKPPhSjNzc2aN29eeomuRYsWKZFIvmux2NAkc7/x48drhx120A477NB9gwYAFBTw+1VfWy/TNGVIajTDGmqGk9dwx1G8uU1OjOV+gD7NdpRoapXts2RFQrIsU8OtiBrMoFbYrYopoVAwlA5SI6FEvws6ynk+OUcU2UfuXk5nO5TeR9Fdl36yUvqwbUe2nVDCtmWn/kvYifQbqwAAAACgK3p9iNLa2uoKTd58880uhSYbbrihdthhB+24446aOnWqhg4d2n2DBwB0qq6mVuFQWJIUMCyNsmoVNpI/nuxYXInmtqJvGgLo/Zx4QvG1zTIDfpnhoAKmpQ18dbL90rJ4s9qdZGBqSDK0/vc6R12ffVJt5cyIzjmCWdUlcRwnFa4kUuFKR9DiDl0AAAAAIJ9eF6K0tbXp5ZdfTocmCxcu7FJossEGG6Rnmuywww4aMWJE9w0eAFA0v8+v+to6WVZyua7BZkjDzIjMjtknLW1yosw+AforO5qsl2KGg7JCAdWYAW0SaEg/3mrHSp65Uez+ne3l9Xh2iFOsSoQ/2cfk76Nw77n9VGhWS6dnLvB4Jwd6jTH7FU3IUdxxFJOthBKKO47iji1bjgzDkM+ypNTPmnxs25btpGaxJDyCFoewBQAAABioqh6itLe365VXXknXNFm4cKHi8fU3zbL/GO4sNBk1apQrNBk9enT3DR4AUJbaSI0i4YgkyW+YGmnVqsbwS5KcWELxllbJ7ovvMwdQKru1XU40JgVMyde1X02LnelR3lwOZoB0i258WROOo7hsxZVQ3LGT4YpsxeWk2xKOI1uOTNOUKVOyJPnz97l+Nkv2zJb1oUt/W4YOAAAAGOiqGqIcffTRev311xWLxdJtpYYmw4YNSwcmO+64o8aOHdt9AwYAdInPslRfVy+flfzxM8gMarhZI8swUsWn22S3xzrpBUC/YztSW1RSNN0UW9tWYKZEGXfey75Z38mBHg+XdapKLdPl2U0F+i6yC6OYHSsWnBipdd8MGaYhwzRTH5uSIVmGIUuWgrIKnjPurA9WEo6tWHrbTj1mK+HYcqRk2GKa6uzPqGKWECNsAQAAAPqGqoYoL7/8ck5bZ6HJkCFDNHXq1HRwsvHGG3frGAEAlREJR1QbqZEk+QxTI6wa1RkBSakaCc3MPgGQpdw1oCp0SLkHDuQrWa967qYpwzSkVMBimIZkuNuk5M+k5B9F+cMWx0ktGyY7uWyYkwxYYqmZLYlU2BJ3kkt+WaYpK9V/Po7jpAOVfEFLwk5U7vUAAAAAUJaqL+fVWWjS0NDgCk0mTJjQk8MDAHSRZVmqr62T35dcH6XODGqEGZHPSN5cSrS2y26LFuoCAIDS2bZSmUb+cMdIBSodM1hMIxWymMm/U1Lhi2EY8smQT6ZCUsGwJb1kmJMRuMjOmNmSDF0Mw5BlWbIsq9AKYumwJd8yYolUGwAAAIDuUfUQRXKHJvX19dpuu+3SocnEiROrODIAQFeEQ2HVRmqSN4oMUyPMiOrNoCTJSdjJ2ScJbvwAAKrEcaREcuE4RwVmfRgZ4YpprF82rCN0MdaHLX6lQpECS4jZ6bAlWZcllrF0WDpscWzZclxhS6GCLbbjrA9ZErZsx3t2CwAAAIDSVD1EiUQirtBkiy22KLooKACgdzJNU/W19Qr4kzd7aky/Rpm162eftEVlt7ZXc4gAABTPceQkHClhF16yLBWkrF9KrGNGS+aSYoZMw1BAlgKd1GvpCFtirvosydAloUQqbHFky5FpGDItn1Q4a8laQiy3bott27Kp1wIAAACkVTVEuffee7Xlllum3lUFAOgPQsGQ6mpqZRiGTBkabkXUYIYkJWefJJpb5TD7BADQH9mOHBUZtphmzgwXw8ic3VJ82JJeJiwjWMmc1dKxrJij5BsdTNPs9A/BzJAlX90Wh7AFAAAAA0BVQ5Stt966mqcHAFSQaRiqq61XMJAsFh8xfRpp1ipgJINyuz2qRAuzTwAAkO3ISRWNLypsSQUsycAlcymx5AxPn9ERiuQPWxzHUUKZy4jZiqXCl7hrpksybLFMU1aq/0ISmUuIZYYszvolxAhbAAAA0JdVfTkvAEDfFwwEVVdbl1xKRIaGWmENNkIyDEOObSvR3CYnXmCteQAAkKuYsMXQ+posHnVa0kuJGYZ8MuSTuf44D5lhSyyjPktmDZeO0EWSLNOSZVryF/jL0nGcnGXEMuu0dAQxAAAAQG9EiAIAKJthGKqrqVMomCwWHzJ8GmXVKpiefRJTorWtk7fZAgCAsjmSHFuOLTkq8IaFdG2WzGXDckOXzLAlJBUMW2LKqtOSEbbEUuGLLUeGYciyLFmWVahcSzLA8azVsj5oIWwBAABATyNEAQCUJeAPqL62TqZpypA0xAxriBlOzT5xlGhpkxOLV3uYAABAkhxHSjhyEp2HLZl1WpLb60OXdFuR9VrsrPosyX872hLJjzPCFp9lSZ3UzLQzlgvLWUYs4zEAAACgEghRAAAlMWSorqZWoWCyWHzAsDTaqlXISP5IsaNxJVrakjdrAABA3+I4chKOlLA7r9diZIQtWaFLx8dmkWFLIjtYSYcuTqotOePFliPTNGXKlCyp0NSWzOXDHMdRIGDKdtbXaIn7Jdt25MhJtjlKf0wdFwAAAHQgRAEAFM1n+VRbU6d4LHlzodEMa1hq9okcR/GWNjlRZp8AANDvpcKHosKWjpksGaGLYZrrZ7kYkmUYsmQp2EnYkhmsJJzUsmFylEiFLh3LijlSMmwxTUk+GYahYNA9wyXgSxQVlnSEKk5yIyNokZTxcbKv9ftmhjHrP16/ryMn2V9GeNOxLwAAAHoPQhQACgWCSrDiAfIxDAUDfvksKz37xDAcjbRqFDGSb/+0Y3Elmpl9AgAAstiOHDu5fFjhsKVjRkvmTBZ3myT5DDP1R2z+sMVxHCWUvYyYI59lJZcOS4UsMiRbqVBEyaXHpGRbJiO1fFlPcwU36fBGhYOcdDCzPsjJDW6U0V9qfxHeAAAA5EOIAkC14YhsX6Daw0Avlf3OzQYrrEGWX4YMyZESrW2y22NVHCEAAOjzbFtO6k09eW/lG0Z6Rsv6Oi2p2S2Zs1wMQz4Z8slMHZf8fSbsc6/91ZqIeQYHHQFER5hiy5GdGllH6GKnBmqn9rK1PpiwpdS/HccrHdU4cmQ7HX137Js81jO86XjePcg1eyZPcJM96yZnRk3Gsa4gh6XTAABAH0SIAgxgtb6gFJccx5ZtFi7giYEtbCZ/XAyyQqozA2qNxWTH4oo3t0o2f/gCAIAe4DhSIjVrQon8+xlGTp0W07KkgJkKJAzJkBw72VN2SNERXpiF1hWTCi47Vq5kmLI+hHFcH3fMGFkfwiSUEUYkn4076Mk81lG6z3TA46zvN/20Uq9H1WbfsHQaAADoZQhRgIHGcWQ897LMN97RBl+sXr/8kqPCfwgW+0dUof2MvBsF9stqKDgMo+Bm6fup7z3vEp5LwT8ZM/Y1JJmmkW6PG4bMhC3DcWSlbkLISN6gcFL/Zral+8v4z3E9nrV/6ngn/Zj34+m+PI/PHYPj9bg8zpl9vHLbnJz+84wTAAD0PMeRk3DXa3EMI+ev3/jattyb6OnfD5L/GunfBzL/VXJGbtZjRtY+HR8bOcen+k2fJ+P0hiFr/UC8dVN4kxnApGfXZIUw6dk0UrotN+yRex/XfuuXTssObzqefzWXTsueRdPxcTweVzQWUyzuPXsJAAD0b4QowAATeHaufM+/XO1hoBco5c/T7D8VzUoOpB9LrreeJ9hJh0Aq+HjHTRzvgKoPhFgdX2kZX3CO66ZR7g0kVwCVfSPFSP/P42OvPlPPN29/mefK6siz/+zxZm13hHaljD1v/6W+NgR3ANBlqRkPHf/mu13eLbfRXW/y6Pgwu829vT68cbclD80Ob5L/cwVD6VMXMfumm8MbKf/SaU5G6JJv6bSOmTjdsXRawB9QJJz8OJ5IKBaLKhaPKRqLybYpLgkAQH9HiAIMJI4j/6tvVnsUwIBhSEqtI1F4H6CC0l9tOQFRxgf5AqLs7U4CKCdj15L7ywqMYpaRubOCpdyUqvS7ggt2V8a5erS/Mg4q++XLc2CZ/eW9Hnbl81sgXCyr14IX7TKu6D3aXxkHVrq/LvWZr7/iO4yZ7reB5Fxniv1ay9mt2O+vcr8PHc8PO+0kz745r1jH8zY667+zcxvu/oo9zHuj+P3Kfu2KfV3z9JznS8+zq46XxusbIKvJdXyer2/3Pt4d5htf7mN5zlHoWyvzTSPep3f3lf1goX2yfo8o/Fy9ji9w3c/zWrnf7FNAvs9jatMyU29qSrHtPDV/ynjjS+V/ZhU6V89dwwt+nVV4EOWdq9Awivj+LKfbdEe5PRkFroWG14nTl3fv653Xz4Pctsz9nZy2nL6c3B28x+Z4jyF1uJG5kdOWPbbOxu0+Z6djSx3s9Zjh8fzWv85eXVX2NTU6WiMhRbcYL+25k2Rye78n8CoDA0nCltHeXu1RAAC6kecfCU7OB5U9Vzdgxhu6GyE2uM6gK7xvvHWGpcAAAF2R+jnS3Cp77kL5P1uh6DHTWJWgB/B7IzCQ+Cwlxo2p9igAAAAAAAAAdIH58TKZK7+s9jAGBEIUYIBpO3hP2cOHVHsYAAAAAAAAALrAaGur9hAGBJbzAgYYpyaitpOOkO/L1TI+XiajtU1OLC67PZa5V4EOOm0o4qFKrWNc6LBi17Tu+trXRpH7dd5nnger/PoYhqFgMOPHhe2ovS22vtZH+r+Oft1tRmZNkDzH5N8nY1sd+ynv48m+CveRHhMAAAAAAEAf5YRDSoweUe1hDAiEKMBAZBhyhjVKoZC0rkl2e0yJFpJreDMMQ5H6kKstvrbNu0hiX5IZtLi23Y+lgxvlCWYyg5sC+yQL4RV6vKN4XYHHM8aRN1DKOEdOoJT9vLNDrEKvhWeI5bWPx+NKjTvjn45Ay/sxpcfCyq4AAAAAAGSpr1HsyAMly6r2SAYEQhQAwMBkGEUVXysmKurjcVLfkB3auYqmZz+W/p/Hxxk7eQY66/vMX6A9z3be/hzPgMhr28jXX97+8wdQ3udyH2N4zgzswmtX8POU/J+Rtd0hFPInN1M7tLXFSvvmKitxK3BQgYfyD6u8/spS6eKRFe+v7Acrdkh5F+cCB1X6Yl/pNyNUvL/yHiz4qcp7WJljL/EaUdR1ptiv3az9nHz7ddpn5n5F7ljK96uRd6MC+xV4sJRrQJFPx+nm/kt6XfN9v2X/vJRkWKYM00z+a5lZA3LkOFJUcUUdW1EnoaiTkN3xxpgMiURC8URCiXhcCTshx7bznt/wavQYspG1i9cTyb9PRj8Frj9GEd/3effJaDeyGws9n/SuuTt1+fnkHN/xxh9Dfr97xfxYzK7MtbnQWCv9w6nguco4qIzhlfdzpLM+yziwR8ee8cPJ8NjVyNwz91roeO5ruB/zGJwjw7s9p63A2CQ5XtdPr7FJrmttp+PO84Imx5f7YO64ix1bGa9pvrF5vKbe+xue400f4zluQ0OGDJbp82nksFGqmbip2te1StFE/o5QMYQoAACg98v+JbLSN3w9VCMcG6iBnGEYsrJmvCX6w4w3AL0G1xn0FoZlyvBZqf98MkxDAUmBjH3anYRanZhanbhanZiiTm5gkrATisViisViisZjSiS4iVZNhmEoEvG72lpaYlxjAFSMYRgKjxoiKxCQ6ofIMFm3oScRogAAAAAAAPQAJ2HLSdhSR01K05Dhs2T6fMlgxTIVNCwFDUsNqWPijq1WJ66WVLDS7sRlmZasoKVQMBkOOo6jaCymWDwZrMTiMc/zA+g9fJYly/LJNE05jiPHcWQ7thw742OCOKBXIEQBAAAAAACoBtuRE40rEY0ntw0jPVPFTP3rM0zVGQHVpear2I6jVsXUasfVqrha7bhsQwoGAgoG1s9picVjyWAlFapwMxboeYZhyLIs+SxfOjRJ/lt8HYuOgCUzWLFtR07Hxx2P2XbGvna6ne99oOsIUQAAAAAAAHoDx5ETi8uJxdWxiNf65b+SwYppGKpRQDVWMjBxTEftSqgltfxXqxNX3LHl9/nl9/mlcLKfeCKeXP4rFarYXnVVAJTFNIz1AYkv+a8vNcskH8swFTRMWbJky5EjWwnHUULJYMTuqLljGDJSyxlbKq+I+PqwJTnTxc4OWuzM0CW3HRjoCFEAAAAAAAB6KSeekBNP1jxJSJJlpmepGD5LhmkqJJ9Chk9ScnmvaKquSjJYiSvqJFLvhPcpHEqmKgnbTs9SicWiilNXBeiUaZoZM0p88vlSS3IVqNnoM5LL9AVkKWAk/wsqOcusEMdxZEtKyJatZKiSDFhsJSTZjp3xuGQrGXgkUvtmBzGWYUgyVWYOkwxW0mFL5oyY7Jkvdrq9Y+YMs2HQ1xGiAAAAAAAA9BUJW7ZnXZVUsXrLTN+oHZQ6pKOuSkex+jYnLss0ZQWDCgWDkpI3bLOXAAMGKsu00gFJ5jJcRp6wxJDkN0wFDJ8CshTM+NgqELA4ti3ZTrIDGcli4an9DcOQJY/ZJyXUE3cyQpXkv7ZsJxm4JOQokQpa1j/upIKYVDDjdMQwydk2ssqdC6OMJcmyQ5iMZcls9zJkmSEMQQyqiRAFAAAAAACgr3LVVWmXjI4lwHyd1FWJq9WOueqqBPwBBfzuuiodgUo0Rl0V9D+Zs0osy5IvtRRXPqaM1MwSnwJKzTBJfVxoNoqTsOXYdvLfREJKJD8uyEgGKskJJIZcIUtHe/rjjnat/1jJj33ZqUsJIYykdKiSUGq2SzpoWT/bJZEZ0mSGMx7LkiXn33RlWbLkkmSuGjGOk1qmzKMuTEY7UC5CFAAAAAAAgP7CkZxYQk4ssb6uimUmZ6n4M+uq+FVj+ZOHuOqqJGeruOqqpCQSiVRNlaiiMeqqoG8op7i7KcO19FbAsBQ0LPll5p2NIikdkjgJO/2fyv0+cZxknSQptZafVFIM0FnIkm5X1j6psCbFNAyZspS8Eljr+y76aWTMclFm+OK1LJnjDmHkKJExGya5LJklFV4JrSDbtt0BTCdLkrnbCWIGKkIUAAAAAACAfix5MzcqtafuxZqpuip+r7oqScm6KnG1pIrVR52ELMtS2LIUTtVesW07Xag+FospnohX5wkCSs26yAxKfMUVdw8YZmoJrlTNklRokpfjrA9JMmeX2L3sBrujZBAjxxW+lBbEdBK8mNnt3TcbJjOESciW4yg1Q8Y9I8ZOzYjpCGISGbNhJKW/HspdmMx7SbLMmS+2ax/X8mQEz30WIQoAAAAAAMBAYtuyo7YUTdU9MVJ1VTpCFcvKqKuSrJkSd+z00l+tiqndTkimqZBHXZVYLKZo6l+g0tzF3ZNLcHVLcffMsCRjdokG0mwEx0nObssIIUp+9pmzW7xmveSbDdMxk0Yds2HKD2Icx8mY7bK+JkzHsmQds2UyH08vWeaxLFmyzk3502G8wpbMGjGuGTGpJcmST7nE9AkVQ4gCAAAAAAAwkDmOnFhcidj6mSRGqp6K6fOtr6uigOqsZM0Ux3TSoUqL4mpz4krITtdVqUn1E4vH03VVYrGo7IF0AxpdUmpxd0kKGKb8hk/BEou7Owk7WackPbNkgIUl3aljWbKMSRjlLEtWXPDiMUtGqeBDmbNPKrEsmS3b6QhkksuSdbZsWcfzNg1DKrCcnOfLYBgFZ1WhexGiAAAAAAAAwMWJJ+TEE7IVldRRVyVZsD65BJihiPyKWH4NSR3T5iTUmlr+q9WJKebY8vt88vt8ksKSknVVOgrVx2IxJexEdZ4geo2ceiWpZbjyMST5DSuruHtylknFi7uj+lLLklVkNoxXnRgzT3s3Lku2ftaLkzPjJZERwjipZckSWUuyoecRogAAAAAAAKCg9Lvz21NLdJlGepZKcgkwUyHDUsiwNDh1TCxVV6Xjv3YnLitV0DsUTNVVcRzFYtF0bZV4nLoq/dH64u7JgMTK+DefihV3t5OzTDCAdcyGyWwq5fjOQpZiZsdo/bJkyRvypc2GMQxD4XBQtt+SafrTTws9gxAFAAAAAAAApbEd2dFYbl2VjlDFZ8lvJP+rT9VVSTiOWhVL1VWJq82OS4YUDAQVDGTWVelYAiyqWDwuhzuFfYZXcXfL8skqo7h7wbCko15JxvJbvbK4O/qH1GwYqStBTJHBi2kka5+YWe0ppmGqQIaIbkKIAgAAAAAAgK4pUFelI1yxDEO1Cqg2o65KmzKXAIsrLlsBv18Bv19SRJIUj8fThepj8Zhsm1kF1ZZT3N3yyfJ1Xty9Y1aJPzWrpKzi7rZNWIK+x3EkR2UvS2YYhsKmw9d+lRCiAAAAAAAAoOI66qpIUkKZdVVStVVMQ2H5FDbW356KpuqqtKTqqkQdWz6fTz6fTwql6qrYiWSgEospGo8pkaCuSnexzOTyaz5f8cXd/amC7h3F3f2GpaB8nRR3d1IzSTJnllDcHXBJLUuGnkeIAgAAAAAAgG7nVVclOUvFl66r0lEDY1DqmLhjq9WJqyU1W6XdiSdv7AfX11VxHCddU6VjtgpKU35x9+TSW4GMj4st7q6M2SUA0JsRogAAAAAAAKDn2Y6caFyJaGoJsFRdlczaKj7DVJ0RUJ0CqUPcdVVa7bhsQwoGAgoGAumuY/FYMlhJhSrUVUnyZdQp8ZVY3D0gU0HDl/6Y4u4ABgpCFAAAAAAAAFRfqq6KE4ur43Z7dl0V0zBUo4BqMuqqtCuRWv4ruQRY3LHl9/nl9/ml5ApgiicSisWi6Rkr/bmuSkdx9/TskiKKu5syFDStEou7KxmUUNwdQD9HiAIAAAAAAIBeKbuuiiwzPUvF8FkyTFMh+RTKW1clrqiTSM26CCucrqtip2epxGJRxftgXRXTNF3LcHUEJ2aBsCS3uLupoHwUdweAAghRkNfy5cu1YMECffzxx2ppaVEoFNKoUaO01VZbaezYsdUeHgAAAAAAGGgStmzPuiqpYvX56qqklv5qdWJqdxKSacoKBhUKBiUl66pkLwHWW5imuT4o8a2fYUJxdwDoGYQoyPHUU0/p5ptv1quvvpp3zdCJEyfq+OOP1yGHHFLwhzYAAAAAAEC3cdVVaZeMjiXAfO66KgqozsqsqxJXqx1z1VUJ+AMK+N11VToClWis++uqVLW4u21LZCUA4IkQBWnNzc264IILNGvWrE73XbRokc477zzdf//9uvbaazV06NAeGCEAAAAAAEABjuTEEnJiifV1VSwzOUvFn1lXxa8ay588pLO6KimJRCJdUyUWiylhl7cEWLpeia8nirvbrrolFHcHgNIRokBSMkA5/vjj9dprr5V03Jw5c/Ttb39bd955p4YNG9ZNowMAAAAAAChPMkiISu2puipmqq6Kv7O6KutDlXYnIcuyFLYshRWSJNm2nQxU4nFZlqNERl0V7+LuliyzcFiSLuqeMauk0+LudsK1/JaTsCWbsAQAKoUQBZKkCy+8MCdAGT16tI477jjttNNOGjlypFasWKFXXnlFt956q9577730fh9++KFOP/103XHHHfL5+JICAAAAAAC9mG3LjtpSNFX3xEjVVekIVSwro65KsmZKwnHUqliyropiarOTdVWCgaBCwZCCQUuOIyUScZmmpdqwnXf5r47i7uuX4CqjuHvHzBKKuwNAt+OON/TUU0/p8ccfd7VNnTpVN9xwg+rq6tJt9fX1Gj9+vA455BCde+65rmNeffVV3X333TrmmGN6bNwAAAAAAABd5jhyYnElYvF0k5Gqp2L6fDJ8lizDUK0Cqk3VVXFMZ32xesXlSEoYtuvNpf5UWBKUT4GM4KRQWOLYTrJOSdbsEoq7A0D1EKIMcI7j6Prrr3e1jR49Wn/84x9VW1vreUwgENBvfvMbffTRR3rjjTfS7TfeeKO+9a1vKRwOd+uYAQAAAAAAupMTT8iJJ2QrKqmjrkqyYH1yCTBDEfkVsfwyDEPhoF9tTlxRJyG/TNkJW4YK1CuxMwISirsDQK9WYJ4gBoInn3xSixYtcrVddNFFeQOUDpZl6ec//7mrbcWKFbr33nsrPkYAAAAAAIBqchK27PaYEs2tiq9pUmxNkxLNbbLbY8kgRFLI8KneDCps+mWmZps4CVt2NK5Ea7viza2KrW1W7Mt1iq9pVqKpVXZru+xoqg8CFADolQhRBrjHHnvMtT1mzBjttddeRR27xRZb6Ktf/aqrLXtZMAAAAAAAgH7HdmRHY0q0tCm+tllqbpHa2qX2qNTWrtiaVFiytlmJ5lbZbVE50biUoOA7APQ1hCgDWCwW0//+9z9X2yGHHCLDyD/dNNu0adNc2/Pnz9cXX3xRkfEBAAAAAAD0CY6keEKKxZP/2oQlANBfEKIMYPPnz9e6detcbVOnTi2pjx122MG1bdu2nn322S6PDQAAAAAAAACAaiNEGcAWL17s2rYsS5MnTy6pj3Hjxmno0KEF+wUAAAAAAAAAoC8iRBnA3n//fdf2qFGjFIlESu5nk002cW1/8MEHXRoXAAAAAAAAAAC9ASHKAPbee++5tkePHl1WP6NGjXJtZ4czAAAAAAAAAAD0Rb5qDwDVs3z5ctf2yJEjy+onO0RZtmxZ2WOqNsMwZBjVHkX3Sz5PQ0r9m94GPHh9ZRiSBsQ3C4AewXUGQHfjOgOgO3GNAdDdPK8zhgbM/bxqP09ClAGspaXFtV1bW1tWP9nHtbW1ybZtmWbfm+jU2FhT7SH0KNtJyIm3S36DqwFKUlcfqvYQAPRzXGcAdDeuMwC6E9cYAN1t0KDSyzKgPH3vLjcqJjtECYXK+wHvdVx23wAAAAAAAAAA9DWEKANYa2urazsQCJTVj1eI0tzcXFZfAAAAAAAAAAD0FizgAwDoXUpa5rIb18SsSNdd7KRbl/wsofNescRqnkH0irGVqC+uWVtwyD39fBzPD8vvroudOHk3yuyjzL463b2THUoeuscBlfh8AAAAAEAvQ4gygIXDYcVisfR2NBotq5+2tractpqavllbZNWqZtl2/78DYFmmLMuQmtpltsZkx+Ky2zu+FgrcDPN8yHt/o/DDuQ+Weg+u2JuQhlf3pT7HPDtUYMw5LUbBRzsdUsHGorvLfY7hsN+1T2trTBhAevNlsTePbcCozCeheteZSoZAVQzIunrq3pTtOR3/dCVIcgo81snBnR1abPDm5HxQ5Jicog7vrvF4P1rs61mwE4/d3TvmvtadNhQ3HkmGk1ufYN3aNu9DS/idt6Cyv686ObCIfjv/lbYn34hS5rmKOqzznSo1nKop9Vu8moPopd0Xp2svtCGpti7k2rFpXXtlnlon1/miz9HVN1xU9LBSr+fo1/Jel/vWz96iduvCz19DUu1g999Ma9a0KBazy+6zLzFNo6q1rAlRBrBIJKK1a9emt73CkGJ4HReJ9M3CRo7jyOnqO1L7gOTzlIzU8zV8lixfuNrDQi/humnlSEaeH/K98nulu9/h3+XAqgLjKzFALL7frnfilHrSrrwc3TozoptmvXT501/pPyK6cheuK2F0nsNqg65t22rP3cnrJrDXjfMibqgWasrbb76diuojyShm5xL66/wGer6b32XO6OmN1/4Ohd6IUMqbJIp+pHv1tfu8vZ1hGFJWWOuz/L3z9xkAfY7XNcaSxTWmryk2vO+sm6IOK7RTcb8FlP/nb6m/J6E3MAxD8ruvM47TS+/NdINqP01ClAEsO+hoamoqq5/s40KhkEyTcjt9gmVKfl/BaSOeN0W9fsB2OvXEc0pIgUMKnTffbJAC5yg0pqL6LtRNoV9ASnw3Q77AwvO5lXgTs+BvWPmft2EYMrPeuWmvbfN4h3CxN/f72jJSALpb8jqTFeabrf3yD4L+94xS8gY/nslPiX0Us5PHuYqcLeEZbDnFhEx59uns67Zg8FfssXmO6+zmT/bjec9bICDMaPMOBZ1Oj8v/Gnm9pkXObulN14tKvqmjs2kUlZo1I3U+7qJ/Ny79wE7fiNGN5674zcTKTQvool4xhaVbzpH/DQmVUkL/HZcow5ARyLq5GXe8r03ddj0r5lzF/qws5/S96DpcrgpNXSvuxwB/7FZUX/zZW8yYM3ZxJBl+f7LNxy39nsYrPoANHz5c77//fnr7888/L6uf7OOGDx/epXGh+yVvShlyIiE5kVCn+2OAMwwZluVus8z+8UtyH8DLXJyuv0680MXqjq9Jr78fEon8s0N7vqyM9wl7S3mbXjGOvO+hKPrdE1XDd3/5evVrlzU4w5DMjqV2kr8KJ98U0nGdKfFGBoDq6Y3XHq83hDhr++cbQrqk2Jej1Jm25Z6rQjNPivoFuStfCuW+wbOczssOrcvYiZ+9JfG8znCJ6TGEKAPYJptsopdeeim9/emnn5bVT/Zx48eP79K40P1s21Ei4cg0K//TyPsC3v1X9e77wVG442r8wCrvnOUP1Gs5r2g0wR8EACrG6zqTSNhcZwaIyoZA3b38RZGj6M5lHTs9R9k9dnP/HmfsznN4zPY1smfLm0bvvBvbg/rrZbb459XbXoDu/cbrFaH7AOLkmYhSrH75+apYGNAfXxwMJJX6+ZtIDIx6KL0BIcoAlh12fP7552ppaSm5nskHH3zg2t544427PDZ0v0TCViJR7VEAAICBrrI3cYvrrHo3jnvbDduBgzeFAOhOXteYWIxrTE+rbvBUzZNX7+uML/Gek69eLXoGIcoAtvnmm7u24/G4FixYoB133LHoPpYuXaoVK1YU7BcAAAAAAADoTtW9oU+aAPRnVP8ewLbZZhvV1dW52ubMmVNSH9n7m6apXXfdtctjAwAAAAAAAACg2ghRBjC/36/ddtvN1fbwww+XNN30oYcecm1vs802GjJkSCWGBwAAAAAAAABAVRGiDHD777+/a/vjjz/WU089VdSxixYt0ty5c11t++23X8XGBgAAAAAAAABANRGiDHB77bVXTg2TX/ziF2pubi54XCKR0EUXXeRqGzZsmA4//PCKjxEAAAAAAAAAgGogRBngDMPQWWed5Wr75JNP9IMf/EBNTU2ex0SjUf3oRz/SwoULXe2nnHKKwuFwdw0VAAAAAAAAAIAeRYgC7bnnntp3331dbbNnz9Y3v/lN3X777Xr33Xe1du1avf/++/rHP/6hadOm6dFHH3XtP2XKFB155JE9OWwAAAAAAAAAALqVr9oDQO9wxRVX6LPPPtOCBQvSbZ988ol+/vOfd3rsuHHj9Nvf/lY+H19OAAAAAAAAAID+g5kokCTV1tbq1ltv1Te+8Y2Sjttuu+101113afjw4d00MgAAAAAAAAAAqoMQBWm1tbX6/e9/rxtuuEFTpkwpuO/mm2+uX/7yl7rjjjs0dOjQHhohAAAAAAAAAAA9h/WXkGOvvfbSXnvtpWXLlum1117TJ598opaWFoVCIY0aNUqTJk3S2LFjqz1MAAAAAAAAAAC6FSEK8hoxYoT22Wefag8DAAAAAAAAAICqYDkvAAAAAAAAAAAAD4QoAAAAAAAAAAAAHghRAAAAAAAAAAAAPBCiAAAAAAAAAAAAeCBEAQAAAAAAAAAA8ECIAgAAAAAAAAAA4IEQBQAAAAAAAAAAwAMhCgAAAAAAAAAAgAdCFAAAAAAAAAAAAA+EKAAAAAAAAAAAAB4IUQAAAAAAAAAAADwQogAAAAAAAAAAAHggRAEAAAAAAAAAAPBAiAIAAAAAAAAAAOCBEAUAAAAAAAAAAMADIQoAAAAAAAAAAIAHQhQAAAAAAAAAAAAPhCgAAAAAAAAAAAAefNUeANCbmKZR7SEAvY5h5H5fmKYhx6nCYAD0S1xnAHQ3rjMAuhPXGADdbaBfZ6p9z9ZwnIHyUgMAAAAAAAAAABSP5bwAAAAAAAAAAAA8EKIAAAAAAAAAAAB4IEQBAAAAAAAAAADwQIgCAAAAAAAAAADggRAFAAAAAAAAAADAAyEKAAAAAAAAAACAB0IUAAAAAAAAAAAAD4QoAAAAAAAAAAAAHghRAAAAAAAAAAAAPBCiAAAAAAAAAAAAeCBEAQAAAAAAAAAA8ECIAgAAAAAAAAAA4IEQBQAAAAAAAAAAwAMhCgAAAAAAAAAAgAdCFAAAAAAAAAAAAA+EKAAAAAAAAAAAAB4IUQAAAAAAAAAAADwQogAAAAAAAAAAAHggRAEAAAAAAAAAAPBAiAIAAAAAAAAAAOCBEAUAAAAAAAAAAMADIQoAAAAAAAAAAIAHQhQAAAAAAAAAAAAPhCgAAAAAAAAAAAAeCFEAAAAAAAAAAAA8EKIAAAAAAAAAAAB4IEQBAAAAAAAAAADwQIgCAAAAAAAAAADggRAFAAAAAAAAAADAAyEKAAAAAAAAAACAB0IUAAAAAAAAAAAAD4QoAAAAAAAAAAAAHghRAAAAAAAAAAAAPBCiAAAAAAAAAAAAeCBEAQAAAAAAAAAA8ECIAgAAAAAAAAAA4IEQBQAAAAAAAAAAwAMhCgAAAAAAAAAAgAdCFAAAAAAAAAAAAA+EKAAAAAAAAAAAAB4IUQAAAAAAAAAAADz4qj0AAEDv9Pnnn+vtt9/WZ599pjVr1kiSBg0apCFDhmjSpEkaMWJElUcIAABQvObmZi1cuFAffvihVq9erUQioXA4rBEjRmjDDTfUpptuKr/fX+1hAuhjYrGYFi9erHfffVdr165Vc3OzwuGw6urqtOGGG2rLLbdUOByu9jABDFCrV6/W/PnztXTpUjU3NysQCGj48OHaYostNH78+GoPr88gRAEASJJWrlypp556Si+++KJmz56tL774ouD+Y8eO1YwZM3T44YersbGxh0YJoL977733dOihhyoajbrax4wZo6eeeqpKowLQVzmOoyeffFJ33XWXZs+erVgslnffYDCoyZMn6+tf/7qOPPJI1dXV9eBIAfQ1c+fO1d///nc9+eSTam9vz7ufZVnaYYcddPjhh2u//faTYRg9OEoA1fbll19q4cKFev3117VgwQItXLhQK1ascO1z2mmn6fTTT6/oeefNm6cbb7xRL7zwghKJhOc+G264oY455hgdddRRvJGkE4bjOE61BwEAqJ7XX39dv/71rzV37lzZtl3y8TU1Nbrwwgs1Y8aMbhgdgIHEcRwdffTRevnll3MeI0QBUKr33ntPF1xwgV577bWSj73nnnu0zTbbVH5QAPq81atX62c/+5n+9a9/lXzstttuqyuvvFIbbbRR5QcGoNe49dZb06HJRx991On+lQxRYrGYrrzySt15551FH7PZZpvpd7/7HdemAqiJAgAD3MKFCzV79uyyAhQpuTTGRRddpEsvvbTCIwMw0Nx1112eAQoAlOo///mPpk+fXlaAAgD5fPnll/rud79bVoAiSa+88oqOOuoovfvuuxUeGYDe5Je//KUeeeSRogKUSorH4zrzzDNLClAk6e2339ZRRx2l9957r5tG1vexnBcAIMeGG26onXfeWVOnTtX48eM1ZMgQBYNBrVixQq+++qruvfdezZ8/33XM3XffrSFDhuiMM86ozqAB9GnLli3TNddcU+1hAOgHnnjiCZ155pk5S1fssssu2nvvvTVlyhQNGTJEkUhE69at00cffaQ333xTzz77bKdLfgEY2M455xwtXrzY1RYMBjV9+nTtvffe2nTTTVVbW6uWlha99957+t///qd7771XTU1N6f1XrVql73//+3rkkUcUCoV6+ikA6MeuueYaPfnkk662wYMH65hjjtHee++tUaNGafXq1Vq4cKFuu+02LViwIL3fqlWrdMopp+jBBx9UbW1tTw+912M5LwAY4O666y5ddtll8vl8OuCAA3TYYYdp6tSpnR53zz336Gc/+5nrRoPP59NDDz2kTTfdtDuHDKAfOvXUU/Wf//xHkhQKhbTVVltp3rx56cdZzgtAMd577z1Nnz5dbW1t6bZNNtlEP/3pT7X99tt3evyaNWt0//33a/fdd9cmm2zSnUMF0Mc88cQTOu2001xto0eP1s0336wJEybkPe7TTz/V97//fb399tuu9rPOOks/+MEPumWsAKpr8803d21HIhFttdVW2mqrrTRp0iSdffbZrscrsZzXokWLdOihhyrzVv+mm26qP//5zxoxYkTO/o7j6Morr9Rf//pXV/v3vvc9nXfeeV0aS3/ETBQAGOBM09RBBx2kM844QxtuuGHRxx1xxBHy+Xy68MIL023xeFx/+MMfdN1113XDSAH0V7NmzUoHKJL0gx/8QEuWLHGFKADQGcdxdPHFF7sClM0331x//etfNXjw4KL6GDRokL73ve911xAB9GEPPviga9s0Tf3hD38oGKBIyaDlpptu0gEHHKCWlpZ0+8yZMwlRgH5q66231qRJk9L/bbLJJjLN9VU1skOUSrjuuutcAUpNTY1uvvlmzwBFkgzD0IUXXqiPP/7YNXvl73//u4477ri8xw1U1EQBgAFuxowZuuaaa0oKUDp861vfypm18swzzygajVZqeAD6uXXr1ulnP/tZenvChAk64YQTqjgiAH3VXXfdpVdeeSW93XHzoNgABQAKefHFF13bu+66q7bYYouijh01apQOOeQQV9v777+vlStXVmx8AHqP++67Tz/5yU80bdo0TZgwwRWgdIe33npL//3vf11tZ5xxhkaNGtXpsZdddplracG2tjb9+c9/rvgY+zpCFAAY4CzL6tLxhx56qGu7ubk5Z51gAMjn17/+tVasWCEp+W6oyy+/XH6/v8qjAtDX2Latm2++2dV2+umn8y5KABWxbt061ywSSdpuu+1K6sNrScHly5d3aVwAIEmPPfaYazsSiWjGjBlFHTt8+HDts88+rrZZs2ZVbGz9BSEKAKBLJk6cmNPWcUMUAAqZO3eu7r333vT29OnTS74hAQCS9Oyzz+rTTz9Nb0ciER1xxBFVHBGA/iQ7QJGkhoaGkvrw2j+zviQAlCu7mPw3vvGNkorDT58+3bX9+eefa+HChRUZW39BiAIA6JLMaZ8dWltbqzASAH1JNBrVJZdckl63d/DgwTr33HOrPCoAfdU//vEP1/aee+6pSCRSpdEA6G8GDx6csxzPmjVrSurDa/+hQ4d2aVwA8Omnn+rdd991tWUvu96ZKVOm5KwG8PTTT3d1aP0KIQoAoEsy3/XZobGxsQojAdCX3HDDDfrggw/S2+eddx51CwCUxXEcvfDCC662nXbaqUqjAdAfBQIBbbrppq62l19+uaQ+svcfMWKExowZ0+WxARjYvJZT33bbbUvqIxQK5dR4evvtt7s0rv7GV+0BAAD6trlz5+a0jRs3rgojAdBXvP3227rlllvS21OnTtW0adOqOCIAfdn777+vpqYmV9vmm2/u2l67dq3mzJmjDz74QM3Nzaqvr1djY6O+8pWv5OwLAF4OOugg183KZ555RosXLy7qGrJ8+XI98MADrrZi6xUAQCHvv/++a9vn82mjjTYquZ/x48frtddeS29nvuENhCgAgC5IJBKaOXOmq238+PG8owpAXrZt65JLLkmvAe73+3XZZZdVd1AA+rTXX389p23ChAmSpGXLlunqq6/WY489lrf2wLBhwzRjxgydcMIJqqur69axAui7vv3tb+vvf/+7PvvsM0nJv4VOPfVU/fnPf9aGG26Y97jly5frlFNOcdVV2WCDDXTCCSd0+5gB9H/vvfeea3vEiBE5yw8WY+TIka7tJUuWKJFIyLKsLo2vv2A5LwBA2e677770HxEdDjjggCqNBkBfcOedd2r+/Pnp7ZNOOknjx4+v3oAA9HnZNw8CgYDC4bAef/xxHXzwwZo5c2bB4s0rVqzQH//4R+2999569tlnu3u4APqo2tpaXX/99a56Sx999JEOPfRQXXnllZo3b57WrFmjeDyudevW6bXXXtN1112ngw8+WG+88Ub6mGHDhummm25STU1NNZ4GgH5m+fLlru3sMKRYo0ePdm1Ho1GtXr263GH1O8xEAQCU5fPPP9fVV1/tahs0aJCOOeaYKo0IQG/32Wef6Te/+U16e8MNN9Qpp5xSxREB6A+yizXX1NToySef1Nlnny3btovuZ/Xq1TrllFP0i1/8QoceemiFRwmgP5g8ebLuuusu/ehHP9I777wjSWppadFtt92m2267reCxhmFon3320U9+8hMKygOomMxZblIy8C2HV7Db0tKiIUOGlNVff0OIAgAoWTwe1w9/+EOtW7fO1X722WeroaGhOoMC0Otddtllrl/yL730UgWDwSqOCEB/sHbtWtd2e3u7fvjDH6YDlGAwqG9/+9vad999tfHGGyscDmv58uV66aWXdNttt+ndd99NHxuPx3XJJZdo00031ZZbbtmjzwNA3zBx4kQ9/PDDeuSRR/TAAw/oxRdf7PSYnXbaSRdddFFOcXoA6KrsECUUCpXVj9dxzc3NZfXVH7GcFwCgZFdccYXmzZvnavva176mI488skojAtDbPfroo3r66afT2wcddJB22WWX6g0IQL+R/aaOlpYWtba2SpLGjBmjhx9+WOeff76mTJmihoYGBYNBjR07VocddpgefvjhnN9fotGofvzjH8txnB57DgD6liVLluill17SW2+9VdT+L774oo477jjdfPPNam9v7+bRARhIOn7n6RAIBMrqxytEyQ5oBjJmogAASnL77bfrzjvvdLWNHDlSv/71r2UYRpVGBaA3W716tX7xi1+ktwcNGqQLL7ywiiMC0J/kCzvC4bD+8pe/aKONNsp7rM/n0+WXX64vvvhCTzzxRLr93Xff1ZNPPqm999670sMF0IfF43Fdf/31uuWWW1zLBfr9fm211VYaP3686urq1NzcrCVLlui1115LhyYrV67U1VdfrZkzZ+oPf/iDxo0bV62nAQAoESEKAKBojzzyiK644gpXW11dnf70pz+psbGxSqMC0Nv96le/0sqVK9PbP/zhD1lbF0DFZBZ5znTyyScXDFAyXXrppXr66addBejvueceQhQAaYlEQj/84Q/1+OOPp9sMw9AxxxyjU045xbPOydq1a3XbbbfpT3/6k+LxuCTp7bff1rHHHqu7775bI0aM6LHxA+ifwuGwazsajZbVT1tbW05bvt+xBiKW8wIAFOWZZ57Reeed53rHVSgU0o033qiJEydWcWQAerMXX3xRDzzwQHp7ypQpOvzww6s4IgD9jdcf+JZl6Ygjjii6j2HDhmmfffZxtb3yyitKJBJdHh+A/uGWW27JCVCuuuoqXXzxxXkLxdfX1+uMM87QzTffLL/fn27/9NNPddFFF3X7mAH0f9m/B3mFIcXwOs6r2PxARYgCAOjUvHnzdMYZZ7jenen3+3X99ddru+22q+LIAPRmbW1tuvTSS9PbHcvmsPQfgEryClE23XTTkme87bjjjq7tpqYmV9F5AAPXqlWrdMMNN7jajj76aH3zm98s6vidd95ZZ555pqvt2WefzakzCQClyv49qKmpqax+vIrIMxNlPUIUAEBBCxcu1Pe//31XsTLTNPWrX/1Ku+++e/UGBqDXu+GGG/Thhx+mt4877jhtvvnmVRwRgP5o5MiROW2bbrppyf14HfPFF1+UNSYA/cvMmTNd79I2DEMnn3xySX185zvfUV1dnavtwQcfrMj4AAxcw4cPd21//vnnZfXz2WefubYDgYAaGhrKHVa/Q00UAEBe77zzjk444YScdzJcfvnlOvDAA6s0KgB9xauvvurabm9v19VXX13UsW+88YZre82aNTnHbrnlltp///27NkgAfd748eNz2gYNGlRyP/X19Tltq1evLmdIAPqZOXPmuLYnTpxYcj2TUCik7bffXk899VS6Lft3JQAo1SabbOLaXrZsmWzblmmWNnciO0TZaKONZFlWl8fXXxCiAAA8ffjhhzr++ONzbh6cf/751DMAUJbbb7+97GObmpp08803u9qmTZtGiALAM0RxHKcifbP8IABJ+uSTT1zbG2ywQVn9ZB+3bNmysscEAFLu70HxeFxLlizJCVc68/7777u2N9544y6PrT9hOS8AQI7PPvtMxx9/vFasWOFqP/3003X88cdXaVQAAAC5Ntxww5w1u9esWVNyP17HDB48uOxxAeg/sgsuB4PBsvoJh8Ou7Wg0WvaYAECS53LJpc5ya2try1kJYLPNNuvSuPobQhQAgMvKlSt13HHH5bzb6nvf+55OO+20Ko0KAADAm2VZ2nXXXV1tb7/9dsn9eB2Tvc44gIEpe7m/cpf6W7VqlWubegMAumr06NGaMGGCqy17CcLOvPrqq4rFYq42auC6sZwXACBt9erVOv7447VkyRJX+xFHHKHzzjuvOoMC0Gd1Zfmu888/31VsdcyYMa41xAEg0957761Zs2alt999912tWLFCw4YNK7qPF1980bU9ZMiQkpfCANA/DR061LW9cOHCsmoOvPbaa67tUq5RAJDPXnvtpXfffTe9/e9//1s/+clPVFNTU9TxDz30kGt75MiR2mqrrSo5xD6PmSgAAElSc3OzTjrppJx3YX7zm9/U5ZdfXqVRAQAAdG6PPfZwLell27buvvvuoo9ftmyZnnzySVfbTjvtVLHxAejbpkyZ4tpevXq1/vvf/5bUx8KFC3P+1tp+++27PDYA2G+//VzbLS0tuv/++4s6dsWKFXr88cddbfvuu2/FxtZfEKIAANTe3q5TTjlFCxYscLXvs88++uUvf0lRVQAA0KvV1dXl1G275ZZb9N5773V6rOM4uvTSS3OWsfjOd75T0TEC6Lt22223nLarrrpK69atK+r4aDSqn/70p0X1CwCl2mKLLbTHHnu42n77299q2bJlnR57+eWXu+o+BYNBnXDCCRUfY19HiAIAA1w8HteZZ56Zs2bm17/+dV1zzTWyLKtKIwMAACje9773PTU2Nqa329ra9L3vfU/vvPNO3mOi0aguvPDCnHeU77rrrtpmm226a6gA+pjNN99cX//6111tS5Ys0UknndTpTcrVq1fr//7v/3KW8po8ebJ23nnnio8VwMB01llnud4Au27dOp144ol5r1GO4+iXv/ylnnjiCVf70UcfrREjRnTrWPsiw3Ecp9qDAABUz7XXXqsbb7zR1ebz+XTUUUcpFAqV1eeWW26p/fffvxLDAzBAURMFQDmeeOIJnXbaaa42v9+vww47TPvtt5822WQThUIhLV++XC+99JL+9re/5dSCGzZsmB588EFqFQBweeedd3T44YerpaXF1R6JRDRjxgztscceGj9+vGpra9Xc3KwlS5bo2Wef1T333KM1a9a4jgkEArr99tsJa4F+auHChTlLZGW6+eabXdvbbrutvvrVr3ruW19fr5NPPrmo8/7qV7/SX/7yF1dbY2OjvvOd72jPPffUqFGjtGbNGi1cuFC33XZbTrg7btw4Pfjgg6qtrS3qfAMJIQoADHDZNyorYdq0afrlL39Z0T4BDCyEKADK9ec//1lXXXVVWccOHjxYN910k7beeusKjwpAf/C///1Pp556as7yf6WwLEtXX321DjjggAqODEBv8sADD+iCCy6oSF+l/B0Uj8d12mmnlVyzSUr+DnTHHXdowoQJJR87ELCcFwAAAACg3zjhhBN01VVXqaampqTjttxyS913330EKADy2m233XTXXXdp4403Luv4MWPG6PbbbydAAdAtfD6ffve73+moo44q6bhNN91Ud999NwFKAYQoAAAAAIB+5ZBDDtGsWbN07LHHatCgQXn3M01TkydP1m9+8xvdf//9Gjt2bA+OEkBfNGnSJM2cOVNXXXWVvvrVr8rn8xXc3zRNTZo0ST//+c/16KOP5l2yBwAqwe/367LLLtOdd96pr33tazLN/Lf/x44dqwsvvFAPPvigNtpoo54bZB/Ecl4AAAAAgH4rkUho4cKFeuedd7Rq1So5jqPBgwdr2LBhmjJlihoaGqo9RAB9WGtrq9544w0tXbpUa9euVUtLiyKRiOrq6jR69GhNmjSJ+gIAqubLL7/U/PnztXTpUjU3N8vv92v48OHacsstmXlSAkIUAAAAAAAAAAAADyznBQAAAAAAAAAA4IEQBQAAAAAAAAAAwAMhCgAAAAAAAAAAgAdCFAAAAAAAAAAAAA+EKAAAAAAAAAAAAB4IUQAAAAAAAAAAADwQogAAAAAAAAAAAHggRAEAAAAAAAAAAPBAiAIAAAAAAAAAAOCBEAUAAAAAAAAAAMADIQoAAAAAAAAAAIAHQhQAAAAAAAAAAAAPhCgAAAAAAAAAAAAeCFEAAAAAAAAAAAA8EKIAAAAAAAAAAAB4IEQBAAAAAAAAAADwQIgCAAAAAAAAAADggRAFAAAAAAAAAADAAyEKAAAAAAAAAACAB0IUAAAAAAAAAAAAD4QoAAAAAAAAAAAAHghRAAAAAAAAAAAAPBCiAAAAAAAAAAAAeCBEAQAAAAAAAAAA8ECIAgAAAAAAAAAA4IEQBQAAAECf8sADD2jzzTd3/ffxxx9Xe1jAgPXxxx/nfE8+8MAD1R7WgHTttde6Pg9///vfqz0kSVJ7e7t233339LimTp2qVatWVXtYAAAUhRAFAAAAAACgj1uyZIn+/Oc/p7c33nhjHX744VUc0XrBYFCnn356envNmjW65pprqjgiAACK56v2AAAAAHqDjz/+WHvttVdVzj116lTdfvvtVTk3+p6rrrrKdZNMkmbMmKFf/OIX3XK+s846S4899pir7eyzz9Ypp5zSLedD9ZVyPbQsS8FgUIFAQA0NDRoyZIjGjBmjTTbZRBMnTtSUKVPU0NDQvQMGIEn62c9+plgslt7+0Y9+JJ+v99z2mTZtmm699Va98847kqT7779fRxxxhLbeeusqjwwAgMKYiQIAAACUoNrL1nzrW9/KaXvsscfU0tJS8XOtXr1aTz75pKvNsixNmzat4udC35RIJNTS0qLVq1dryZIlevnllzVz5kxdd911OuWUU7Tjjjtq+vTpuummm7Rs2bJqDxcZsq9jv/vd76o9JHTBc889p+eeey69PXHiRO29995VHFEu0zT1gx/8IL3tOI5+/etfV3FEAAAUhxAFAAAA6EPGjx+vbbfd1tXW3NysWbNmVfxc//rXvxSNRl1tu+66q0aMGFHxc6F/chxHb7zxhq655hrttdde+vGPf6xPP/202sMC+p1rr73Wtf3973+/SiMpbL/99tO4cePS23PmzHGFPwAA9Ea9Z14nAABAFfn9fk2cOLGkY1paWrR06VJXWyQScd0cKEap+wMzZszQK6+84mq7//77Kz5D5P777/c8NwaeQte25uZmrVu3Tk1NTYrH43n7iMVievjhhzVr1iydffbZOu6447pptMDA8sQTT2jhwoXp7XHjxmm//far4ojysyxL3/ve93TZZZel26677jp97Wtfq96gAADoBCEKAACApBEjRujhhx8u6ZjZs2fru9/9rqttq622or4Jut3++++vX/ziF2pubk63zZs3T0uXLq1YKLdo0SK9+eabrrYhQ4Zo9913r0j/XTF9+nRNnz692sMYUIq9tq1cuVILFizQggUL9MILL+i1117L2aetrU1XXnmlXn/9df3qV7/qVTUbUJ4NNthAixcvrvYwBqybb77ZtX3kkUfKNHvvwiPf/OY3ddVVV6WXoXz99df10ksvaccdd6zyyAAA8NZ7f6oCAAAA8BSJRHTAAQe42hzH8Zw5Uq5//OMfOW2HHHKI/H5/xc6B/mfo0KHac889ddZZZ+nee+/V/fffr29+85syDCNn33/9618677zzqjBKoP94+eWXXWGl3+/v9XWrampqdNBBB7nabrvttuoMBgCAIhCiAAAAAH2Q17JaDz/8sGzb7nLf0WhU//znP4s6J1DIVlttpV//+tf64x//qIaGhpzH//Wvf+nWW2/t+YEB/cRf//pX1/Zee+2lxsbGKo2meNk/T55++ml9+OGHVRoNAACFEaIAAAAAfdA222yjCRMmuNo+++wzPf/8813u+8knn9Tq1atdbVOmTNH48eO73DcGpj322EP333+/583da6+9Vp988kkVRgX0bV9++aWeeuopV1tvrYWSbfLkyRo9enR623EcPfjgg1UcEQAA+bH4LAAAQC+wZs0avf/++/rwww+1Zs0atbS0KBwOa9CgQRoyZIi23nprz3dxd4fW1lYtWLBAH374oVavXq1EIqG6ujrtsMMO2nTTTTs9vq2tTa+88oo+//xzrVy5UqZpaujQodp88801ceJEz2V9Ks1xHC1evFgfffSRVq1apdWrVyscDquxsVFjxozRpEmT+kUdhhkzZuiXv/ylq+2BBx7Qrrvu2qV+H3jggZy2b33rW0Uf3/H6f/jhh1q1apXWrFmjuro6NTY2aoMNNtCWW27ZK9frX7dunV5//XWtXLlSq1evVnNzs8LhsBoaGrTRRhtpwoQJqq2trci5EomE3njjDX366adatWqV1q5dq9raWjU2NmrDDTfUFlts0SPfKz1pgw020G9+8xudcMIJSiQS6fb29nZdf/31uuqqq6o4usqJRqNauHChPvjgA3355ZeKRqOqqanRNttso8mTJxd1/NKlS/X+++9rxYoV6dpHgwYN0qBBg7TZZptpk0026e6nUXUd3yMff/yxvvzyS61bt06DBg1SY2OjNtpoI22++eY9Mo5Vq1Zp/vz5+uijj9TS0pK+lk2ePFljxozpkTHk8+ijjyoWi6W3Q6GQdtttty73m0gktGTJEr399ttatWqVmpublUgkFA6HVVNTo1GjRmmDDTbQuHHjunQt32effVzLeM2cOVNnnnlmv7v2AQD6vr7/lyMAAEAf1N7ermeeeUbPPvusZs+erSVLlhTc3zAMTZgwQdOnT9cRRxyhmpqaks/5u9/9Tr///e9dbZmFgF999VX9+c9/1v/+9z9Fo9Gc40877bSCIco777yj3//+93rmmWfSxWKzDR8+XEceeaSOP/54RSKRosZVitdff1233367nn/+ea1cuTLvfjU1Ndpll1100kknaeutt+603wceeEAXXHBB3scvuOCCgo9L0tSpU4sqzF2KQw45RNdcc43rJtp//vMfrVmzRoMGDSqrz2XLluXMZolEItp///07PfaDDz7QLbfcov/9739asWJF3v0aGhr0ta99TSeccIK22GKLksfo9fl48skntcEGG5Tc17p163TnnXfqySef1BtvvOG6uZ/NsixNmjRJu+++u6ZPn64RI0aUfL4XXnhBd999t1588UWtXbs2734NDQ3afffddfLJJ/erGUA77bSTvv3tb+d8Lzz66KM699xzNWzYsLzHzp49W9/97nddbX/729+0ww47lDyOPffc0zX7Zdq0aTmBZLbOvu7eeecd3XLLLfr3v//teQ2cNm1a3hDlrbfe0n/+8x/Nnj1br732muc1OFNjY6N23313nXjiiUV/fXi9fpl+//vf51yLs40ZMyZn5oMkffzxx9prr71cbVdeeaWmT59e1Ngyvf7667r11lv13HPPac2aNXn3Gz58uHbffXeddNJJGjduXMnn+c53vqM5c+akt7Ov0bNnz9af/vQnvfjii3mXSZwwYYK+//3v6+CDD67Kjf9HHnnEtb3DDjukf7aWY+HChbrrrrs0a9YsrVu3rtP9a2trtfXWW2u33XbTfvvtp5EjR5Z0vj322MMVonzyySd65ZVX9NWvfrXUoQMA0K1639u/AAAA+rm//vWv2nnnnXXaaafpnnvu6TRAkZLv7H/nnXf0q1/9SnvssYf+/e9/V2w8sVhMP/3pT3XUUUfpiSee6PTmXTbbtvWb3/xGhx56qB5//PG8AYokLV++XL/97W910EEHaeHChV0detonn3yi008/XTNmzNDDDz9cMECRpObmZv373//WYYcdptNPP73gzezerLGxUXvuuaerLRqN6l//+lfZfT744IM5QcJ+++1XcAZGa2urLrvsMh100EH6xz/+UTBAkaTVq1frX//6l6ZPn65zzz234I3S7pJIJPTHP/5Re+65p6699lotWLCgYIDSccz8+fN13XXXaY899tCCBQuKPt/ixYt17LHH6vjjj9esWbM6/ZpbvXq1HnroIR188MH6yU9+UvL3ZW927LHHyrIsV1ssFtNjjz1WpRF13Q033KBDDz1UDz30UMFrYLb33ntP++67rw499FD9/ve/19y5c4v6XK9atUoPPPCADjzwQF188cX94utj1apVOvvss3XYYYfpkUce6fS6sHz5ct1777064IAD9POf/7xir0E0GtXFF1+s7373u3r++ecL1pl69913de655+rEE08s6fNeCWvWrNH8+fNdbVOnTi2rr2g0qp/85Cc67LDD9I9//KOoAEWSmpqa9MILL+jKK6/UGWecUfJ5p0yZokAg4Gr73//+V3I/AAB0N0IUAACAHvbWW2+pqamp7OPXrFmjM844QzfddFOXx5JIJHTGGWfozjvvlOM4ZR1//vnn609/+pPi8XjRx33yySf6zne+o9dff73kc2abP3++DjvssLKDpX//+986/PDD+2xBW69ltu6///6y+/Nak75QQflVq1bp2GOP1V133VXS14CUDAdnzpypb3/72/r0009LHmu5Vq9erRNPPFHXXXdd2QFaIpFQa2trUfs+9dRTOvLII/XSSy+VdZ577rlH3/nOd/TFF1+UfHxvNHbsWO2xxx457U8//XTPD6YCLr/8cl1//fUlf/1L0sqVK4sK0vNxHEf33Xefjj766C79XKm2jz76SEcddZQeffTRkn8WxWIx3X777Tr++OO7HMi2t7frxBNP1H333VfScc8995xOPvnkToPYSnr++edzzldOiBKNRnXyySfrnnvuKRgYdYdgMKhtttnG1fbMM8/06BgAACgGy3kBAABU2cYbb6yJEydq/PjxGjZsmGpqauT3+9Xc3KzPPvtMb775pp5//nm1tbWlj3EcR7/5zW+02Wabaffddy/73L/97W9dS7M0NDRo11131aRJkzRkyBC1tbXp888/17PPPuu5VMkvf/lLPfzwwzntkUhEX//61zVlyhQNGzZMbW1t+vTTT/X000+nZ6C0tLTo1FNP7VIR3NmzZ+ukk05Se3u7q900TW233XaaMmWKNthgA9XV1am9vV2ff/655s6dqxdffNF18+mDDz7QySefrPvvv99zxsWgQYM0ceJESckbdu+9957r8VGjRnW6fFY5y80UY9ddd9XIkSP1+eefp9veeOMNLVq0KD3mYs2bNy/nhu7GG2+cd2mVtrY2HXvssXr77bdzHhs8eLC+8Y1vaPPNN1djY6NWr16t999/X7NmzdLy5ctd+7777rv69re/rYceeqjba/+sW7dORx11lN5///2cx/x+v7bZZhtNnTpVI0aMUH19vVpbW7Vq1Sq99dZbeu211/TRRx+VdL5//vOf+vGPf5xzc9Lv92vHHXfU5MmTNXLkSNXV1amlpUWffPKJXnzxRb388suu/efPn6/TTjtNf/vb3+T3+0t/4r3MTjvtpP/85z+utvnz58txnD5VD+G+++7T3//+9/R2JBLRLrvsom233VZDhgyR4zj6/PPPNXv27KJqRwwaNEiTJk3SJptsonHjxqm2tlaRSERtbW368ssv9e677+r555/PCR0XLFigiy++WNddd13eviORiOuasGjRItfjQ4cO1dChQwuOb/jw4Z0+h1J98cUXOuqoozxnsI0cOVLf+MY3NH78eA0aNEirVq3SokWL9MQTT2j16tWufefNm6fjjz9ed999d87shmJdeOGFmj17dnp744031te//nVtsskmGjRokJqamvTmm2/q3//+d86Mx7lz5+q2227TCSecUNa5S5W5FJmUvKaUes2XpJtuukkvvvhiTvuoUaO0yy67aMKECRoyZIiCwaBaW1vV3NysDz/8UO+8847mz5/f5Rk4kyZNcj2XRYsWae3ataqvr+9SvwAAVBIhCgAAQA8zDENTpkzR9OnT9fWvf72oNcSbm5t166236sYbb0zXv3AcRxdccIH++9//KhQKlTWWm2++WVKy1sP3v/99nXTSSZ7rqZ922mk5QcWcOXM8a3wcfPDBuvDCC9XY2Jjz2Omnn67Zs2fr4osv1tKlS7Vs2TLdc889ZY19xYoVOuecc3LGNX36dJ1++ukaPXq053GnnHKKli5dqssvv1zPPfdcun3JkiW68MIL9dvf/jbnmL322iu93r/X2v9nnHFGWWv/V4Jpmpo2bZr++Mc/utrvv/9+XXTRRSX15TWDpVBB+SuuuCInQLEsSyeddJL+7//+T8FgMOeYCy64QLfeequuv/561/I7n332mS6++OJOazJ0heM4Ovfcc3MCFMMwNGPGDJ1++umd1jlZtGiRZs6cqXvvvbfT873zzju65JJLXAGKz+fTscceqxNPPNHze0RKfp+89dZbuuiii/TGG2+k21955RX95je/0XnnndfpuXu77HefS8nr3JIlS7Txxhv3/IDK1HENlaQjjzxSZ511lgYPHpyz3ymnnJJzreowbNgwTZs2Td/4xje01VZbdRq2OI6jZ555RldccYUr9Hzssce033775Q2mJ02a5Aq9swuzH3nkkTr99NMLnrvSHMfR+eefnxOghEIhnX322frud7/r+XpcfPHF+t3vfqe//OUvru+vN954Q1dffbUuvPDCksfy2muvpT9Hw4YN0yWXXKJ9993Xc98f/ehH+ulPf6qHHnrI1X7jjTfq6KOPLvtncimyZ3JuvPHGJYdH7e3t+vOf/+xqC4fDuuSSSzRt2rROvxaj0ajmzp2rBx54QMuWLSvp3B2ygx/HcbRw4ULtvPPOZfUHAEB3YDkvAACAHnbhhRfq7rvv1uGHH150Edaamhqddtppuummm+TzrX8fzKpVqzxnghQrkUjINE1dc801OvPMMwsWpM28Ie44ji677LKcZVeOP/54XX311XlvDkvJwrd///vftdFGG0mSa4ZNKS688ELXO4Ety9LVV1+tK6+8Mm+A0mHcuHG65ZZbcoKPWbNmlVTnorf41re+lfPu/X/+85+ugvOdaW5u1uOPP+5q8/l8OvTQQz33f/nll3MCMNM0dcUVV+jss8/2DFCk5OfpxBNP1O9+97ucGRVPPPGEZs2aVfSYS3X33Xfrv//9r6stEAjommuu0c9//vOiCsVPnDhRP/7xj/X000/n3ITOZNu2zjnnHNeSX5FIRH/+85/14x//uOD3iCR95Stf0d13361ddtnF1X777be7Zh31VRMnTvScUVPqTJ9q65jRdv755+vyyy/3DFA6eH1PbL311nr66af1wx/+UFtvvXVRs1UMw9Buu+2me++9V1tssYXrscwi3X3Bv/71r5zlm4LBoG688UYdd9xxeV+PUCikc889V5dddlnOY3/729/KWiqyI0AZO3as7rnnnrwBipT8mfzLX/5SX/va11zta9eu7dZrWIdYLKbFixe72jbddNOS+3nxxRdzZpJceuml+ta3vlXU12IgENAuu+yia665xhUolmKzzTbLaavEUp8AAFQSIQoAAEAPq6urK/vYnXfeWd/97nddbaWu3Z7tuOOO0/7771/SMS+99FLOklZTpkwp+h3yw4YN03XXXZdTXLpYCxYsyLnxds455+jggw8uug/DMPTTn/5U48ePd7VXotZMTxs7dqx22GEHV9uXX37pWqqtM4899ljOzbTddttNw4YN89z/r3/9a07bsccemzd0ybb77rt7FiK+9dZbizq+VLFYzPNze8kll+jAAw8sub/a2tqCS4/NmjUrZ5bOFVdcoR133LHocwQCAV1//fWuG/OxWKzbXqOe5PP5PJfAK/fd7NW077776vjjjy/r2HA47ArGSzFo0CD96le/crW9+uqrevfdd8vqrxq8vpbPPfdc7bTTTkUdf8QRR+jII490tTmOU3aY5Pf7dd1112nMmDGd7msYhi644IKc9swZjt3lk08+yQnJO3vzgJfs0DIUCpX0czRTOBwu6ziv17ordYIAAOgOhCgAAAB9TPZN6rfeeqvoAtfZOma4lMprCa7zzz+/pFoGX/nKV8peAuuWW25xbW+44YZl3cT0+/36/ve/72p75plnXMtM9RVexd8feOCBoo/3WsorX0H5ZcuW5dSzGDJkiGcoUsjxxx+fnpHU4dVXX3UtYVUpjzzySE4dia997Ws6/PDDK34uSTnvyp46dWrJYaWUDF2zg9MnnniiS2PrLbwC5b5WHN00Tf34xz+u2vk322wzbbnllq627Ho6vdX8+fNzvtc322wzHX300SX188Mf/jAnkJs1a1ZOzZJiHHTQQdpqq62K3n/ChAk5r393XL+yffLJJzltxcyky9bc3OzarqurKzvUK1ddXV3OLNiPP/64R8cAAEBnCFEAAAD6mOybzvF4PF2svVQHHHCAampqSj7upZdecm1PmDDBs8ZBZ/LdpC+kvb09Z0mmadOmlT2rZbfddsvpf/78+WX1VU377LNPTiHeZ599NqeIu5clS5bolVdecbUNGzZMX//61z33f/HFF9PLGHU45JBDCi4H58Xv9+uwww7LaX/++edL6qcYXrNyTjzxxIqfR0reAMy+ker1PIu1++67u7Y/+eQTz5uofY3XTJRyl/erlh133FEbbLBBVcew4YYburb7yvXL6/v8yCOPLGoZqUz19fU5s8lisVhO4fVilPN9OmnSJNd2T8yi8FrSb+jQoSX3kz2bbuXKlfrwww/LHVbZhg8f7truD0sWAgD6FwrLAwAAVFkikdCrr76qRYsW6e2339by5cvV3Nys5ubmnBvV+WS/w75Y2UtAFWPp0qX68ssvXW35brZ3ZptttlFDQ4NWr15d9DGvvfZazkyRbbfdtqzzS8mbSHV1dVq3bl267c0339TUqVPL7rMagsGgDj74YN15553ptkQioYceekgnn3xywWO9ZqEceuihed+RnB24SMpbzLoz+++/v37961932n9XOI6juXPnutpGjBhR9JJBpco+l9S1r1Gvm/RvvfVWUUsO9WaZBcE7lDKbrTco5xramaVLl2r+/PlavHixPvroIzU1NampqUnRaDSnDpUkffbZZwW3eyuv7/N99tmnrL72339//f3vf8/p/4ADDii6j1AopK233rrkc48bN861nUgk1NzcXNYbFIrlNWOr1BBbkiZPnuzadhxHZ599tv7whz9o1KhRZY+vVKFQyLWdPUMGAIBqI0QBAACokhUrVuimm27So48+WtayI5kyA4BSZBclLkZ2nQdJOcuZlDqGF154oej9vW68XX755Z5FqouV/e737JCor5gxY4YrRJGSS3oVClE6gpZs3/rWt/Ie8+abb7q2/X6/Jk6cWNpgU8aMGaPGxkatWrUqb/9dtXTpUlf/UrKGT3fx+ho99dRTK3qOvvo1mmnt2rU5bdk3U3u7cq6hXmzb1j/+8Q/de++9XS6q7fW69kbZ3+cjR47MW4OpM1tuuaVM03QFc6UuqzV69Oiyfo7kW5auO0MUrxlbwWCw5H6+8pWvaIsttnB9Lt544w3tu+++2n///bX//vtrxx137Pbvy+z+y12iFACA7kKIAgAAUAX33HOPrrrqqoqt/19uiDJkyJCSj/G6eduVd8SXuhSO1zIf2UXuu6qUmTG9yRZbbJFzQ+yDDz7QK6+8kncmxHPPPZez5Nd2222njTfeOO95sr8GxowZU9YNvA4TJkxwLb1T6YDAK6TcbLPNKnqOTF5fo4sWLaroOfpriNKdN567QznX0GzvvfeefvSjH1UsPOwLdWUcx8m5zo4fP77s/mpqajRq1CjXMnelfo94LS9XDK8Ze9lF3yvNa5ZquUtaXnrppfrOd77jmuHZ3t6uhx56SA899JD8fr8mTZqkbbbZRltvvbW23377spYOKyR77PF4vKL9AwDQVdREAQAA6GE333yzfvKTn1T0Rle5Nxxqa2tLPsbrxqfXO3G7aww9EXC0t7d3+zm6i1edGa/lugo91lmtmuyvga58/iXl1HKJRqMVfSfymjVrctrKvWFaDL5GOxeNRj2vJT25hFAllHMNzfT222/rmGOOqejsq75wA7qpqSlnObdKX0e8vu8L6cpsxp7mNTOk3GvCNttsoz/96U8aPHiw5+OxWEyvvPKK/vKXv+iss87SLrvsogMOOEDXX3+93n///bLOmS17Zk04HK5IvwAAVAozUQAAAHrQvHnzdPXVV+e0RyIR7bnnnvrqV7+qCRMmaOTIkWpoaFAgEFAwGMypE7D55ptXZDz5al4Ukl2PROrazadAIFDS/n1lqZpqOfjgg/WrX/3KdUPtscce08UXX5xzY+rLL7/MKbheU1PTaX2T7PXqu3rDy+v45ubmit1Iq1T9gGLxNdq5t956y/Nm/9ixY6swmvKV++5/KXlz+qyzzspZak6SvvrVr2rnnXfWVlttpZEjR2r48OEKBoMKhUI55zz//PP14IMPlj2OavCqedHV78ns60V/rqvhdW30WuKrWDvvvLMef/xx/eUvf9G9997b6Sye9957TzfccIP++Mc/ap999tG5557bpe/d7ACIEAUA0NsQogAAAPSgK6+8Mqdt+vTpuuCCC3LeRZtPV26UVILXu4W7crOq1GO9lo169NFHu7QUTH9SX1+vb3zjG/rXv/6Vbmtubtbjjz+uadOmufadOXNmzrIzBx54YKc3sGpqalxBQVdnjXgdX8llnbxmC7S0tFSs/2xeX6MLFizo0pJn/c2rr76a01ZbW5tTpLs/u/fee3OWIhw3bpx+85vfaNKkSUX3U+2fCeXw+v7u6vdk9nWkry0NVwqvZeRKnXmTraGhQeecc47OOOMMvfjii3rhhRc0b948vfXWW3mXJ3McR7NmzdLzzz+v6667TrvuumtZ584eeyWWyQMAoJJYzgsAAKCHfPjhh1q4cKGrbY899tCVV15ZdIAidf1GSVd5jbUryxeVum6915Ij1X5Nehuv5bgeeOCBoto6W8pLyv0aKLcmT4fsmRuBQKCi70RuaGjIaevOrxmvr9G+Wmenu7z44os5bVOmTMmZddddurtmRTEyg04pedP/1ltvLSlAkfrm9a+2tlam6b4dUenrSHcu2Vdto0ePzmnzqsVUDp/Pp1133VXnnXee7rvvPr3yyiu688479cMf/lBTp071nMHa1NSkM844Qx988EHJ54vFYvriiy9cbV7PDwCAaiJEAQAA6CHPP/98Ttupp55acj8fffRRJYZTNq+aBW+//XbZ/ZV6rFdB208//bTs8/dHO+64ozbYYANX29y5c7V06dL09htvvJFT7HzTTTfV5MmTO+2/sbHRtf3xxx97LvNWrOx34+dbm79cw4YNy2lbvHhxRc+Ria/RwpYsWaJnnnkmp32PPfYoeJzXzdty639UO3hobm7W/PnzXW2HHnpozvdtMar9M6EchmHkfJ9nXwdK0dLSos8++8zVVunrSG/i9XWybNmybjlXIBDQdtttp5NPPlm33367nnvuOf3oRz/KCdNbWlp0/fXXl9z/ihUrcurjlPN9AABAdyJEAQAA6CHZ7xINBoMlv+NY8l4GpydtueWWOWvyZ98MLNa6detKLky79dZb57TNnTu3rPP3V4Zh6Fvf+parzXEc18wTr4Ly2cfks8UWW7i24/G43nrrrTJGmgwXst+FvOWWW5bVVz5jx47NCTa68/uIr9HCbrvttpybpoFAQPvvv3/B47yWZfOqd9OZzz//vOwi3JWyfPnynNdgu+22K7mflStX9skQRcq9jnz++edauXJlWX298cYbOa9npa8jvUlDQ4NGjhzpaitnFkg5Bg8erJNOOkn33HNPzpJpTz/9dMmButfvABMnTuzSGAEAqDRCFAAAgB6SvWxVuUuNPPbYY5UYTtkikYg222wzV9vTTz9d1s3MRx99tOR3ku+4444570h/+umne2x5Hq93wycSiR45dymmT5+es1zOQw89JNu2FY1Gc5YS8vv9OuSQQ4rqe8qUKTltjz/+eFnj9DrOq/+u2n777V3by5cv91xSqhJ22WWXnLYnnniiW87V1zz//PO65557ctoPPvjgnBlO2byWEiwnQJgzZ07Jx1Sa1zKG5fxM6MrPg+wwvKevY17f57NmzSqrL6/ryLbbbltWX31F9pswujIjtBybbLJJzvKPra2trhmPxcieESnlPjcAAKqNEAUAAKCHZNd4WLt2bc47ZzszZ84cvfHGG5UcVlkOOOAA13Zra6v+/ve/l9RHLBbT3/72t5LPXVtbq6lTp7raPv/8cz388MMl91WO7iiI3B1Gjhypr33ta662zz77TM8//7z+85//5CxntOeee3Z6E7vDTjvtlHMDdubMmSW/DvF4XPfee29Oe/a4K+Eb3/hGTtstt9xS8fNI0oQJE7TRRhu52hYsWNBtoU1f8dFHH+mcc87Jue6Fw2GdccYZnR4/YsQIRSIRV9uCBQtKHofX11xPy34eUun1oWKxmO64446yx5B9Levp65hXEfJ77rmn5J+L69at8wyFd9hhhy6Nr7fLXnpx9erVFauLUqxNNtkkp63U2jbZIUpdXZ023njjLo0LAIBKI0QBAADoIdl1Gdra2jRv3ryij29tbdUll1xS6WGVZcaMGfL7/a62G264oaSluW688Ua9++67ZZ3/Bz/4QU7bVVdd1SPL2tTU1OTMRumty+nkKzDflaW8pOTN7L333tvVtnLlSv3+978vaXx//etfc5ag2XbbbXOW+amE/fbbT2PHjnW1Pffcc912Q/2UU07Jabv44osHbIH5p556SjNmzPB8/j/60Y9ylibyYpqmvvKVr7jannnmmZJu2j755JO9Ymk1rzo9XnWzCvn973+vJUuWlD2G7Jk9PX0d23rrrbXVVlu52hYvXqy77rqrpH6uvfbanK+r/fbbT0OGDOnqEHs1r7C5lN8pKmHFihU5bcWG8R1efvll1/bOO++cM4sSAIBq4ycTAABAD/Fa7/7aa68tahmqtrY2nXnmmV26YVZJjY2NOvLII11tra2tOv7444sqDnzbbbeVfMM909SpU3OWTFqzZo1OPPHEsosTt7e36+6779att95acD/TNDV+/HhX23PPPVfyu6d7gtfskv/85z964YUXXG0jR470fFd4Iccdd1xO26233qpHHnmkqOOfeeYZXXvttTnt3/ve90oaR7Esy/IMNn72s5/p0UcfLbm/pqamgoHIN7/5zZx3aX/88cc6+eSTyy4A3dTUpJtvvrnHZl1Vwuuvv65zzz1XP/jBDzxfr2nTpumYY44pur+vf/3rru3W1lZdd911RR27aNEiXXjhhUWfqzsNGTIkZ7bSP//5T8+ljbzcf//9uummm7o0huxlGefOndvjs1GOP/74nLarrrqq6KDrH//4R84sSMMwPK9P/c1XvvIVDR8+3NU2e/bskvq47bbbSg7vOjQ1NenBBx90tdXX12v06NFF9/HRRx/p008/dbXttttuZY0HAIDuRIgCAADQQ7beemuNGTPG1fbKK6/o9NNP16pVq/Iet2DBAh199NH63//+J8m7uHI1nHPOOTnv7P/888916KGH6pprrskJM6LRqP73v//p2GOP1ZVXXplu32abbco6/5VXXplzA2nJkiWaMWOG/vSnPxX17nTHcfTKK6/oiiuu0J577qlLL720qHdjZ6/l/8EHH+iiiy7SJ598UtqT6GZedU6i0WhO4HPooYeW/M7fbbfdVkcddZSrzbZt/fjHP9bvfve7vMWFE4mE/vKXv+i0007LCRC/8Y1veC67VSkzZszQvvvu62qLRqM655xz9JOf/KSocOPtt9/W1Vdfrd13312LFy/Ou59lWbr++utzlkx67bXXNG3aNN15551FFTePx+N64YUXdMkll2j33XfX1VdfXXbx7Z6watUqPf3007r++ut1+OGHa8aMGZo5c6bnvtOnT9cvfvGLkvqfNm1azlJyd9xxh37729/mra+USCR033336dvf/rZWr14twzByZtJVw/777+/ajsViOvHEEwveCF+7dq1+/vOf66KLLkp/H5f7MyH7OrZu3TqdffbZZQfR5TjooINybpq3tbXp5JNP1h133JE3nG5vb9c111yjSy65RI7juB479thjc2a49Fd77bWXazs7IO/MnDlz9L3vfU8HHXSQbrzxxqI/9++8846OO+64nJ95+++/f0nfW9nj9fl82n333Ys+HgCAnpJbFRMAAADdwrIsnXrqqTnvhP7vf/+rvfbaS/vss48mT56swYMHq6Xl/9u7/5iq6j+O4y9Qfl5+XuSSIynBkZlgoGgm05FI01Ix7cfUSE3yxyLHbFZz/KGVbKWhhWWK5m/UiumUqTFLnbppZlhApJaTJBs/BBEv/kK/fzhZ13vQe0EF+z4f/51z7znnzd2FsfM678/bqjNnzmjv3r365ZdfbG4SZWRk6J133rnf5dvx9vZWVlaWJk6caBNYXL58WUuXLtXSpUvl5+enTp066dKlS6qsrLS7sT527FiZzWYVFhY27XP0Zn5ISIg+//xzpaSk2Dw9bbVa9cknn2jJkiWKjY1VTEyMLBaL/Pz8dPHiRZ0/f14VFRUqKSlRUVFRi5ZXGj16tDZs2GCzLy8vT3l5eTKbzTKbzXZLfvXs2dPpG8Z3w5gxY27bXePi4mK47Jcj3n33Xf300082A42vXr2q7Oxs5ebmKjExUY899pgCAwNVV1enEydOqKCgwHDd/s6dO+uDDz5oUR3OmDdvnv744w+bpeSuX7+ujRs3Ki8vTzExMerXr1/Td6ahoUE1NTX6/fffVVhY6FQ3WGRkpObPn6+0tDSbG/zV1dWaO3euFi5cqLi4OPXq1Utms1m+vr5qaGhQXV2dzpw5o+LiYpWUlKi+vv5ufgQtUlRUZBfI3XSz5vr6eoc667y9vfX2229r3LhxTtcREhKi8ePHa9WqVTb7Fy9erK1btyopKUkRERHy9PRUbW2tjh07pj179tg87Z6amqr8/Pw2Dz0nTJigdevWqa6urmlfZWWlUlJSFBcXp/j4eIWGhsrFxUVVVVX6+eeftXfvXpu/d/3791dISIg2b97s9PWTk5O1aNEim+/m7t27tXv3bvn7+ysoKEju7u42x1gsFi1btsz5H/Y2MjMzNXLkSJuloaxWq95//30tX75cQ4YMUUREhHx9fVVTU6PS0lIVFBQYzpB54oknNHPmzLtaX3s2YsQIm+XPTp8+rZKSEqeXRDx+/LiysrKUlZWl0NBQ9ejRQ927d1dQUJD8/PzUoUMH1dfXq6ysTIcPH9aRI0fswquAgAClpaU5dd3vvvvOZjs+Pv4/vwwbAODBRIgCAABwH40ePVoHDhywG4JrtVq1efPmO94Imzp1qpKTk9tFiCJJUVFRWrFihSZPnmw3qFy68dT0v28Q/ttzzz2n2bNn67PPPrPZ78xT1VFRUdq4caPS0tLsbm5brVbt27dP+/btc/h8joqOjtYLL7ygvLw8u9fOnj1r2Fl06/yB+6Vbt2568sknbYKqf+vbt69dR5GjPD09tWrVKk2ZMsVuwHd1dbU2btzo0HkiIiKUk5OjgICAFtXhDB8fH61fv14zZsywG/R+5coVHTp0SIcOHbpr13vmmWe0cuVKpaen280PqKur065du7Rr1667dr17xWq1OrzUVHPc3Nw0fPhwzZgxw6EZKM1JT0/XgQMHdPz4cZv9ZWVlysnJue2xw4YNU3p6usPLzt1LAQEBmj9/vqZNm6bGxkab13788cc7LmkVGRmpRYsW2XT2OcNisWjatGl2f4OlG8sjGv1Nd3ZouCOCgoK0fv16TZ48WadOnbJ57e+//7YLzJrTu3dvffHFF3bBz39ZbGysHnnkEZvPbefOna2aK1VeXq7y8nIVFBQ4fIyfn5+ys7MNZ/0059y5c3ZdV80FtQAAtDWW8wIAALjPMjMznX7y38PDQxkZGUpPT79HVbVcdHS0tm3bpmHDhjn0fh8fH7333ntasGCBOnbsaBey+Pr6OnX9yMhIffvttxo/frw8PDycOvZWUVFRDq/HPmfOHKWkpDwQA3Bv931raRfKTWazWatXr9Yrr7xi131zJy4uLnr++eeVm5vr1Dr6reXv76+cnBylpaXZLbflKA8PD4cDv7i4OOXl5WnEiBF2S1E5w8XFRf369TOcr9Reubi4qGfPnpo5c6a+//57ZWZmtipAkSQvLy+tWbNG0dHRTtUxadIkLViwoF39zg4aNEiLFi1yekmuhIQErVu3Tv7+/q26/vTp05Went7my5uFhYVpw4YNGjp0qFxcXJw61s3NTa+++qq++uqrVn8eD6Jb55Pl5+fbdYk0p1OnTq2+fu/evZWbm6u4uDinjtuxY4dN51pwcLASExNbXQ8AAPcCnSgAAAD3mbu7uz788EMlJSVpyZIlOnLkSLPv9fX11bBhw5SamtriboH7wWKxKCsrS9OnT9eOHTu0f/9+/fPPP6qqqlKHDh0UFBSkyMhIDRw4UMOHD7cJSm6d79CSm2A+Pj7KyMjQtGnTtHbtWu3Zs0elpaV3HPbu6empmJgYPf300xo8eLDdwPjbcXd31+zZszVp0iTl5+fr6NGjOn78uGpqanThwgWHljW6X4YOHap58+bZDY329fVVUlJSq8/v5eWlOXPm6LXXXlNOTo727t1r13XxbwEBAYqPj9frr7/eqiemW6Njx4568803NW7cOK1evVq7du3SsWPHbnvz0c3NTTExMRo8eLCSk5Od6pyxWCz6+OOP9dZbb2nNmjXat2+fQ/MHTCaT+vbtq/79+ysxMdFurlJbc3V1lbu7uzw8PBQQEKCgoCCFhoaqa9euevzxxxUbG3tPOowCAwOVm5urr7/+WitWrFBZWZnh+zp06KABAwZo+vTpdjNA2oshQ4aoR48e+vLLL7VlyxZdvHjR8H2urq7q06ePJkyYYDcLo6VcXV01depUvfTSS9q+fbsOHz6sEydOqLKyUlar1aG5PXeL2WzWwoUL9euvv2rFihXav3+/YTfMTcHBwUpISFBqaqrCwsLuW53tzYsvvqjs7GxduHBB0o1h7QcOHNCAAQPueOzcuXM1ZcoU7d69WwcPHlRhYaFDs6E8PT01aNAgjRo1SgkJCS2q+9ZOxbFjx/5fdREBAB4sLtcdfUQBAAAA90RVVZWOHDmiiooK1dXVyd3dXZ06dVJ4eLh69Ojh9NP9D5qBAwfa3LQZOXKkPvroo1af99y5cyoqKlJ1dbVqa2tVX18vLy8vmUwmBQcHq2vXrurSpUurOgNg7Pr16yotLdWpU6dUXV2t8+fPy8fHR2azWQ8//LB69uzZrroBbqqsrFRJSYmqq6tVU1OjK1euyNvbW4GBgeratasiIiLk5eV1165XVVWl4uJi1dTUqLa2VlarVd7e3jKZTAoJCVF4eHjTTAzc3smTJ1VcXKzq6mpduHBBJpNJYWFhiomJuS/LxN0tly9f1tGjR3Xy5EnV1tbq2rVr8vX1VVhYmKKioh6on6W1GhsbVVRUpPLycp09e1b19fXy9fVVUFCQHn30UXXv3r2tS2w3MjMztXLlyqbtZ599Vp9++mmLzlVRUaGysjKdPn1a586dU0NDg1xdXWUymRQYGKhu3bopPDy8Vf+blJSUaNSoUU3bnp6e+uGHH2Q2m1t8TgAA7iVCFAAAALSZ3377TcnJyTb7MjIyNH78+LYpCACAB0xFRYWSkpLU0NAg6UYH1s6dO9ttB+usWbO0ZcuWpu1Jkya1m1lvAAAYaX+PfwEAAOD/htEQ6Adp3gMAAG3NYrFo3LhxTduNjY1avnx5G1bUvPLycuXn5zdt+/j46I033mjDigAAuDNCFAAAALSJ7du3a9u2bTb7evXqxRItAAA4KTU1VX5+fk3beXl5qqioaMOKjC1fvlxXr15t2p44caICAwPbsCIAAO6MEAUAAAAt9ueff2r16tWqr6936rhNmzZp1qxZdvtZxgsAAOcFBARoxowZTduXLl1SdnZ2G1Zk76+//tKmTZuatkNDQzV58uQ2rAgAAMcwEwUAAAAtVlhYqJdfflkmk0kJCQlKSEhQdHS0unTpYjcMu7y8XAcPHtTatWtVXFxsd674+Hjl5OQwRBsAgBZobGzUmDFjVFJSIknq2LGjtm7dqvDw8Dau7IaZM2fadKAuXrxYiYmJbVgRAACOIUQBAABAi90MUW7l5eUls9ksk8mkhoYG1dbW6vz5882e56GHHtI333yj4ODge1kuAAD/aaWlpSooKGjajomJUXx8fBtWdMOlS5e0bNky3bwF5e/vr5SUlDauCgAAxxCiAAAAoMWaC1GcER0drcWLF8tisdylqgAAAAAAuDuYiQIAAIAWs1gs6tu3r1xdnf+3snPnzpo9e7bWrVtHgAIAAAAAaJfoRAEAAECrnT17VgcPHlRhYaFOnDih8vJy1dTUyGq16tq1a/Lx8ZG/v79CQkIUGxurPn366KmnnpKbm1tblw4AAAAAQLMIUQAAAAAAAAAAAAywnBcAAAAAAAAAAIABQhQAAAAAAAAAAAADhCgAAAAAAAAAAAAGCFEAAAAAAAAAAAAMEKIAAAAAAAAAAAAYIEQBAAAAAAAAAAAwQIgCAAAAAAAAAABggBAFAAAAAAAAAADAACEKAAAAAAAAAACAAUIUAAAAAAAAAAAAA4QoAAAAAAAAAAAABghRAAAAAAAAAAAADBCiAAAAAAAAAAAAGCBEAQAAAAAAAAAAMECIAgAAAAAAAAAAYIAQBQAAAAAAAAAAwAAhCgAAAAAAAAAAgAFCFAAAAAAAAAAAAAOEKAAAAAAAAAAAAAYIUQAAAAAAAAAAAAwQogAAAAAAAAAAABggRAEAAAAAAAAAADBAiAIAAAAAAAAAAGCAEAUAAAAAAAAAAMAAIQoAAAAAAAAAAIABQhQAAAAAAAAAAAADhCgAAAAAAAAAAAAGCFEAAAAAAAAAAAAM/A8CR4rs7OqmPAAAAABJRU5ErkJggg==",
"text/plain": [
"