import os import time import numpy as np import torch import soundfile as sf import argparse from SVCNN import SVCNN from utils.tools import extract_voiced_area from utils.extract_pitch import extract_pitch_ref as extract_pitch, coarse_f0 SPEAKER_INFORMATION_WEIGHTS = [ 0, 0, 0, 0, 0, 0, # layer 0-5 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # layer 15 0, 0, 0, 0, 0, 0, # layer 16-21 0, # layer 22 0, 0 # layer 23-24 ] SPEAKER_INFORMATION_LAYER = 6 APPLIED_INFORMATION_WEIGHTS = [ 0, 0, 0, 0, 0, 0, # layer 0-5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # layer 15 0, 0, 0, 0, 0.2, 0.2, # layer 16-21 0.2, # layer 22 0.2, 0.2 # layer 23-24 ] def svc(model, src_wav_path, ref_wav_path, synth_set_path=None, f0_factor=0., speech_enroll=False, out_dir="output", hallucinated_set_path=None, device='cpu'): wav_name = os.path.basename(src_wav_path).split('.')[0] ref_name = os.path.basename(ref_wav_path).split('.')[0] f0_src, f0_factor = extract_pitch(src_wav_path, ref_wav_path, predefined_factor=f0_factor, speech_enroll=speech_enroll) pitch_src = coarse_f0(f0_src) query_mask = extract_voiced_area(src_wav_path, hop_size=480, energy_thres=0.1) query_mask = torch.from_numpy(query_mask).to(device) synth_weights = torch.tensor( SPEAKER_INFORMATION_WEIGHTS, device=device)[:, None] query_seq = model.get_features( src_wav_path, weights=synth_weights) if synth_set_path: synth_set = torch.load(synth_set_path).to(device) else: synth_set = model.get_matching_set(ref_wav_path).to(device) if hallucinated_set_path: hallucinated_set = torch.from_numpy(np.load(hallucinated_set_path)).to(device) synth_set = torch.cat([synth_set, hallucinated_set], dim=0) query_len = query_seq.shape[0] if len(query_mask) > query_len: query_mask = query_mask[:query_len] else: p = query_len - len(query_mask) query_mask = np.pad(query_mask, (0, p)) f0_len = query_len*2 if len(f0_src) > f0_len: f0_src = f0_src[:f0_len] pitch_src = pitch_src[:f0_len] else: p = f0_len-len(f0_src) f0_src = np.pad(f0_src, (0, p), mode='edge') pitch_src = np.pad(pitch_src, (0, p), mode='edge') print(query_seq.shape) print(synth_set.shape) f0_src = torch.from_numpy(f0_src).float().to(device) pitch_src = torch.from_numpy(pitch_src).to(device) out_wav = model.match(query_seq, f0_src, pitch_src, synth_set, topk=4, query_mask=query_mask) # out_wav is (T,) tensor converted 16kHz output wav using k=4 for kNN. os.makedirs(out_dir, exist_ok=True) wfname = f'{out_dir}/NeuCoSVCv2.wav' sf.write(wfname, out_wav.numpy(), 24000) def main(a): model_ckpt_path = a.model_ckpt_path device = 'cuda' if torch.cuda.is_available() else 'cpu' # device = 'cpu' print(f'using {device} for inference') f0factor = pow(2, a.key_shift / 12) if a.key_shift else 0. speech_enroll = a.speech_enroll model = SVCNN(model_ckpt_path, device=device) t0 = time.time() svc(model, a.src_wav_path, a.ref_wav_path, a.out_dir, device, f0factor, speech_enroll) t1 = time.time() print(f"{t1-t0:.2f}s to perfrom the conversion") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--src_wav_path', required=True) parser.add_argument('--ref_wav_path', required=True) parser.add_argument('--model_ckpt_path', default='ckpt/G_150k.pt') parser.add_argument('--out_dir', default='output_svc') parser.add_argument( '--key_shift', type=int, help='Adjust the pitch of the source singing. Tone the song up or down in semitones.' ) parser.add_argument( '--speech_enroll', action='store_true', help='When using speech as the reference audio, the pitch of the reference audio will be increased by 1.2 times \ when performing pitch shift to cover the pitch gap between singing and speech. \ Note: This option is invalid when key_shift is specified.' ) a = parser.parse_args() main(a)