import os from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F import torchaudio import torchaudio.transforms as T from models import GeneratorNSF as Generator, PitchEncoder as PitchEmbedding from torch import Tensor from torchaudio.sox_effects import apply_effects_tensor from wavlm.WavLM import WavLM, WavLMConfig import json from utils.tools import AttrDict, load_wav SPEAKER_INFORMATION_WEIGHTS = [ 0, 0, 0, 0, 0, 0, # layer 0-5 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # layer 15 0, 0, 0, 0, 0, 0, # layer 16-21 0, # layer 22 0, 0 # layer 23-24 ] SPEAKER_INFORMATION_LAYER = 6 def fast_cosine_dist(source_feats: Tensor, matching_pool: Tensor, device: str = 'cpu') -> Tensor: """ Like torch.cdist, but fixed dim=-1 and for cosine distance.""" source_norms = torch.norm(source_feats, p=2, dim=-1).to(device) matching_norms = torch.norm(matching_pool, p=2, dim=-1) dotprod = -torch.cdist(source_feats[None].to(device), matching_pool[None], p=2)[0]**2 + source_norms[:, None]**2 + matching_norms[None]**2 dotprod /= 2 dists = 1 - ( dotprod / (source_norms[:, None] * matching_norms[None]) ) return dists class SVCNN(nn.Module): def __init__(self, model_ckpt_path, model_cfg_path='config.json', wavlm_ckpt_path='ckpt/WavLM-Large.pt', device='cpu' ) -> None: super().__init__() # set which features to extract from wavlm self.weighting = torch.tensor(SPEAKER_INFORMATION_WEIGHTS, device=device)[:, None] # load model with open(model_cfg_path) as f: data = f.read() json_config = json.loads(data) model_cfg = AttrDict(json_config) pitch_emb = PitchEmbedding(model_cfg).to(device) model = Generator(model_cfg).to(device) state_dict_g = torch.load(model_ckpt_path, map_location='cpu') pitch_emb.load_state_dict(state_dict_g['pitch_encoder']) model.load_state_dict(state_dict_g['generator']) model.remove_weight_norm() self.pitch_emb = pitch_emb.to(device).eval() self.model = model.to(device).eval() print(f"Generator loaded with {sum([p.numel() for p in model.parameters() if p.requires_grad]) + sum([p.numel() for p in pitch_emb.parameters() if p.requires_grad]):,d} parameters.") self.h = model_cfg # load wavlm wavlm_ckpt = torch.load(wavlm_ckpt_path, map_location='cpu') cfg = WavLMConfig(wavlm_ckpt['cfg']) wavlm = WavLM(cfg) wavlm.load_state_dict(wavlm_ckpt['model']) wavlm.to(device) self.wavlm = wavlm.eval() print('wavlm loaded') self.device = torch.device(device) self.sr = 16000 self.hop_length = 320 def get_matching_set(self, p: Path|str, weights=None, vad_trigger_level=0, out_path=None) -> Tensor: """ Get concatenated wavlm features for the matching set using all waveforms in `wavs`, specified as either a list of paths or list of loaded waveform tensors of shape (channels, T), assumed to be of 16kHz sample rate. Optionally specify custom WavLM feature weighting with `weights`. """ feats = [] # 只取有声段作为matching_set # x, sr = torchaudio.load(p, normalize=True) x, sr = load_wav(p, self.sr) # x, _, __ = trim_long_silences(x, sr) audio_length = len(x) slice_length = 60*self.sr for start_pos in range(0, audio_length, slice_length): end_pos = start_pos + slice_length slice_x = x[start_pos:end_pos] slice_x = torch.from_numpy(slice_x).float() feats.append(self.get_features(slice_x, weights=self.weighting if weights is None else weights, vad_trigger_level=vad_trigger_level)) feats = torch.concat(feats, dim=0).cpu() if out_path: os.makedirs(os.path.dirname(out_path), exist_ok=True) torch.save(feats, out_path) return feats @torch.inference_mode() def vocode(self, c: Tensor, pitch:Tensor) -> Tensor: y_g_hat = self.model(c, pitch) y_g_hat = y_g_hat.squeeze(1) return y_g_hat @torch.inference_mode() def get_features(self, path, weights=None, vad_trigger_level=0): """Returns features of `path` waveform as a tensor of shape (seq_len, dim), optionally perform VAD trimming on start/end with `vad_trigger_level`. """ # load audio if weights == None: weights = self.weighting if type(path) in [str, Path]: # x, sr = torchaudio.load(path, normalize=True) x, sr = load_wav(path, self.sr) x = torch.from_numpy(x).float() else: x: Tensor = path sr = self.sr if x.dim() == 1: x = x[None] assert sr == self.sr, f"input audio sample rate must be 16kHz. Got {sr}" # trim silence from front and back if vad_trigger_level > 1e-3: transform = T.Vad(sample_rate=sr, trigger_level=vad_trigger_level) x_front_trim = transform(x) waveform_reversed, sr = apply_effects_tensor(x_front_trim, sr, [["reverse"]]) waveform_reversed_front_trim = transform(waveform_reversed) waveform_end_trim, sr = apply_effects_tensor( waveform_reversed_front_trim, sr, [["reverse"]] ) x = waveform_end_trim # extract the representation of each layer wavs_split = torch.tensor_split(x, (x.shape[1]-1)//(sr*30)+1, dim=1) feature_list = [] for wav_chunk in wavs_split: wav_input_16khz = wav_chunk.to(self.device) if torch.allclose(weights, self.weighting): # use fastpath features = self.wavlm.extract_features(wav_input_16khz, output_layer=SPEAKER_INFORMATION_LAYER, ret_layer_results=False)[0] features = features.squeeze(0) feature_list.append(features) else: # use slower weighted rep, layer_results = self.wavlm.extract_features(wav_input_16khz, output_layer=self.wavlm.cfg.encoder_layers, ret_layer_results=True)[0] features = torch.cat([x.transpose(0, 1) for x, _ in layer_results], dim=0) # (n_layers, seq_len, dim) # save full sequence features = (features*weights[:, None] ).sum(dim=0) # (seq_len, dim) feature_list.append(features) return torch.cat(feature_list) @torch.inference_mode() def match(self, query_seq: Tensor, pitch:Tensor, pitch_bins:Tensor, synth_set: Tensor, topk: int = 4, query_mask: Tensor = None, alpha = 0, tgt_loudness_db: float | None = -16, target_duration: float | None = None, device: str | None = None) -> Tensor: """ Given `query_seq`, `matching_set`, and `synth_set` tensors of shape (N, dim), perform kNN regression matching with k=`topk`. Inputs: - `query_seq`: Tensor (N1, dim) of the input/source query features. - `matching_set`: Tensor (N2, dim) of the matching set used as the 'training set' for the kNN algorithm. - `synth_set`: optional Tensor (N2, dim) corresponding to the matching set. We use the matching set to assign each query vector to a vector in the matching set, and then use the corresponding vector from the synth set during decoder synthesis. By default, and for best performance, this should be identical to the matching set. - `topk`: k in the kNN -- the number of nearest neighbors to average over. - `tgt_loudness_db`: float db used to normalize the output volume. Set to None to disable. - `target_duration`: if set to a float, interpolate resulting waveform duration to be equal to this value in seconds. - `device`: if None, uses default device at initialization. Otherwise uses specified device Returns: - converted waveform of shape (T,) """ device = torch.device(device) if device is not None else self.device synth_set = synth_set.to(device) query_seq = query_seq.to(device) pitch = pitch.to(device) pitch_bins = pitch_bins.to(device) if target_duration is not None: target_samples = int(target_duration*self.sr) scale_factor = (target_samples/self.hop_length) / query_seq.shape[0] # n_targ_feats / n_input_feats query_seq = F.interpolate(query_seq.T[None], scale_factor=scale_factor, mode='linear')[0].T dists = fast_cosine_dist(query_seq, synth_set, device=device) best = dists.topk(k=topk, largest=False, dim=-1) out_feats = (1-alpha) * synth_set[best.indices].mean(dim=1) + alpha * query_seq if query_mask is not None: query_mask = query_mask[..., None].repeat([1, out_feats.shape[-1]]) out_feats = out_feats * query_mask + query_seq * (query_mask == False) out_feats = torch.repeat_interleave(out_feats, 2, 0) out_feats = self.pitch_emb(out_feats, pitch_bins) prediction = self.vocode(out_feats[None].to(device), pitch.unsqueeze(0)).cpu().squeeze() # normalization if tgt_loudness_db is not None: src_loudness = torchaudio.functional.loudness(prediction[None], self.h.sampling_rate) tgt_loudness = tgt_loudness_db pred_wav = torchaudio.functional.gain(prediction, tgt_loudness - src_loudness) else: pred_wav = prediction return pred_wav