Spaces:
Running
Running
File size: 8,544 Bytes
21a5880 5c71abd 21a5880 5c71abd 21a5880 5c71abd 21a5880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import anthropic
import base64
import pandas as pd
import requests
import os
import numpy as np
from openai import OpenAI
import io
import tiktoken
import PyPDF2
import prompts
from typing import List, Literal
from pydantic import BaseModel
import time
import gradio as gr
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
def ask_claude(
query: str,
pdf_path: str = None,
use_cache: bool = False,
system: str = None,
max_tokens: int = 1024,
model: str = "claude-3-5-sonnet-20241022"
) -> str:
"""
Unified function to query Claude API with various options.
Args:
query: Question/prompt for Claude
pdf_path: Optional path to PDF file (local or URL)
use_cache: Whether to enable prompt caching
system: Optional system prompt
max_tokens: Maximum tokens in response (default 1024)
model: Claude model to use (default claude-3-5-sonnet)
Returns:
Claude's response as a string
"""
client = anthropic.Anthropic(api_key=ANTHROPIC_API_KEY)
# Handle PDF if provided
content = query
betas = []
if pdf_path:
# Get PDF content
if pdf_path.startswith(('http://', 'https://')):
response = requests.get(pdf_path)
binary_data = response.content
else:
with open(pdf_path, "rb") as pdf_file:
binary_data = pdf_file.read()
pdf_data = base64.standard_b64encode(binary_data).decode("utf-8")
content = [
{
"type": "document",
"source": {
"type": "base64",
"media_type": "application/pdf",
"data": pdf_data
}
},
{
"type": "text",
"text": query
}
]
betas.append("pdfs-2024-09-25")
# Add prompt caching if requested
if use_cache:
betas.append("prompt-caching-2024-07-31")
# Prepare API call kwargs
kwargs = {
"model": model,
"max_tokens": max_tokens,
"messages": [{"role": "user", "content": content}]
}
# Add optional parameters if provided
if system:
kwargs["system"] = system
if betas:
kwargs["betas"] = betas
message = client.beta.messages.create(**kwargs)
return message.content[0].text
class Point(BaseModel):
content: str
importance: Literal["critical", "minor"]
class Review(BaseModel):
contributions: str
strengths: List[Point]
weaknesses: List[Point]
requested_changes: List[Point]
impact_concerns: str
importance_mapping = {"critical": 2, "minor": 1}
client = OpenAI(api_key=OPENAI_API_KEY)
model_name = "gpt-4o-2024-08-06"
def format_gpt(prompt):
chat_completion = client.beta.chat.completions.parse(
messages=[
{
"role": "user",
"content": prompt,
}
],
model='gpt-4o',
response_format=Review,
)
return chat_completion.choices[0].message.parsed.model_dump()
def parse_final(parsed, max_strengths=3, max_weaknesses=5, max_requested_changes=5):
new_parsed = {}
new_parsed["contributions"] = parsed["contributions"]
new_parsed["impact_concerns"] = parsed["impact_concerns"]
new_parsed["strengths"] = "\n".join(
[f'- {point["content"]}' for point in parsed["strengths"][:max_strengths]]
)
new_parsed["weaknesses"] = "\n".join(
[f'- {point["content"]}' for point in parsed["weaknesses"][:max_weaknesses]]
)
request_changes_sorted = sorted(
parsed["requested_changes"],
key=lambda x: importance_mapping[x["importance"]],
reverse=True,
)
new_parsed["requested_changes"] = "\n".join(
[
f"- {point['content']}"
for point in request_changes_sorted[:max_requested_changes]
]
)
return new_parsed
def process(file_content, progress=gr.Progress()):
# Create a list to store log messages
log_messages = []
def log(msg):
print(msg)
log_messages.append(msg)
return "\n".join(log_messages)
if not os.path.exists("cache"):
os.makedirs("cache")
pdf_path = f"cache/{time.time()}.pdf"
with open(pdf_path, "wb") as f:
f.write(file_content)
progress(0, desc="Starting review process...")
log("Starting review process...")
all_reviews = []
for i in range(3):
progress((i + 1) / 3, desc=f"Generating review {i+1}/3")
log(f"Generating review {i+1}/3...")
all_reviews.append(ask_claude(prompts.review_prompt, pdf_path=pdf_path))
all_reviews_string = "\n\n".join([f"Review {i+1}:\n{review}" for i, review in enumerate(all_reviews)])
progress(0.4, desc="Combining reviews...")
log("Combining reviews...")
combined_review = ask_claude(prompts.combine_prompt.format(all_reviews_string=all_reviews_string,
review_format=prompts.review_format), pdf_path=pdf_path)
progress(0.6, desc="Defending paper...")
log("Defending paper...")
rebuttal = ask_claude(prompts.defend_prompt.format(combined_review=combined_review), pdf_path=pdf_path)
progress(0.8, desc="Revising review...")
log("Revising review...")
revised_review = ask_claude(prompts.revise_prompt.format(review_format=prompts.review_format, combined_review=combined_review, defended_paper=rebuttal), pdf_path=pdf_path)
log("Humanizing review...")
humanized_review = ask_claude(prompts.human_style.format(review=revised_review), pdf_path=pdf_path)
progress(0.9, desc="Formatting review...")
log("Formatting review...")
formatted_review = parse_final(format_gpt(prompts.formatting_prompt.format(review=humanized_review)))
log("Finished!")
contributions, strengths, weaknesses, requested_changes, impact_concerns = (
formatted_review["contributions"],
formatted_review["strengths"],
formatted_review["weaknesses"],
formatted_review["requested_changes"],
formatted_review["impact_concerns"],
)
contributions = f"# Contributions\n\n{contributions}"
strengths = f"# Strengths\n\n{strengths}"
weaknesses = f"# Weaknesses\n\n{weaknesses}"
requested_changes = f"# Requested Changes\n\n{requested_changes}"
impact_concerns = f"# Impact Concerns\n\n{impact_concerns}"
return (
contributions,
strengths,
weaknesses,
requested_changes,
impact_concerns,
"\n".join(log_messages), # Return the log messages
)
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# TMLR Reviewer")
gr.Markdown("This tool helps you generate high-quality reviews for the Transactions on Machine Learning Research (TMLR).")
with gr.Row():
# Left column
left_column = gr.Column(scale=1)
with left_column:
upload_component = gr.File(label="Upload PDF", type="binary")
submit_btn = gr.Button("Generate Review")
# Progress log moved below upload section
progress_log = gr.Textbox(label="Progress Log", interactive=False, lines=10)
# Right column for review outputs
right_column = gr.Column(scale=2)
with right_column:
output_component_contributions = gr.Markdown(label="Contributions")
output_component_strengths = gr.Markdown(label="Strengths")
output_component_weaknesses = gr.Markdown(label="Weaknesses")
output_component_requested_changes = gr.Markdown(label="Requested Changes")
output_component_impact_concerns = gr.Markdown(label="Impact Concerns")
submit_btn.click(
fn=process,
inputs=upload_component,
outputs=[
output_component_contributions,
output_component_strengths,
output_component_weaknesses,
output_component_requested_changes,
output_component_impact_concerns,
progress_log,
]
)
demo.queue()
return demo
if __name__ == "__main__":
demo = gradio_interface()
demo.launch(share=False)
|