Spaces:
Sleeping
Sleeping
Kevin Wu
commited on
Commit
·
9d23c0f
1
Parent(s):
8b47fae
updates
Browse files- app.py +71 -105
- structures.py +73 -0
app.py
CHANGED
@@ -4,117 +4,46 @@ import os
|
|
4 |
import time
|
5 |
import gradio as gr
|
6 |
from openai import OpenAI
|
7 |
-
import xml.etree.ElementTree as ET
|
8 |
-
import re
|
9 |
-
import pandas as pd
|
10 |
import prompts
|
11 |
import traceback
|
12 |
from io import StringIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
15 |
|
16 |
model_name = "gpt-4o-2024-08-06"
|
17 |
-
|
18 |
try:
|
19 |
demo = client.beta.assistants.create(
|
20 |
name="Information Extractor",
|
21 |
-
instructions="Extract information from this note.",
|
22 |
model=model_name,
|
23 |
tools=[{"type": "file_search"}],
|
24 |
)
|
|
|
25 |
except Exception as e:
|
26 |
print(f"Error creating assistant: {str(e)}")
|
27 |
raise
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Wrap the content in a root element to ensure there's only one root
|
42 |
-
xml_string = f"<root>{''.join(xml_content)}</root>"
|
43 |
-
|
44 |
-
# Parse the XML
|
45 |
-
root = ET.fromstring(xml_string)
|
46 |
-
|
47 |
-
result = {}
|
48 |
-
|
49 |
-
for element in root:
|
50 |
-
tag = element.tag
|
51 |
-
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
|
52 |
-
result[tag] = {
|
53 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
54 |
-
**{child.tag: child.text.strip() if child.text else None
|
55 |
-
for child in element if child.tag != 'reasoning'}
|
56 |
-
}
|
57 |
-
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
|
58 |
-
if tag not in result:
|
59 |
-
result[tag] = []
|
60 |
-
reasoning = element.find('reasoning')
|
61 |
-
for item in element:
|
62 |
-
if item.tag in ['drug', 'treatment', 'medication']:
|
63 |
-
date_element = element.find('date')
|
64 |
-
result[tag].append({
|
65 |
-
'reasoning': reasoning.text.strip() if reasoning is not None else None,
|
66 |
-
'name': item.text.strip() if item.text else None,
|
67 |
-
'date': date_element.text.strip() if date_element is not None and date_element.text else None
|
68 |
-
})
|
69 |
-
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
|
70 |
-
result[tag] = {
|
71 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
72 |
-
**{child.tag: child.text.strip() if child.text else None
|
73 |
-
for child in element if child.tag != 'reasoning'}
|
74 |
-
}
|
75 |
-
elif tag == 'compounding_pharmacy':
|
76 |
-
result[tag] = {
|
77 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
78 |
-
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
|
79 |
-
}
|
80 |
-
elif tag == 'adverse_effects':
|
81 |
-
if tag not in result:
|
82 |
-
result[tag] = []
|
83 |
-
effect = {
|
84 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
|
85 |
-
}
|
86 |
-
for child in element:
|
87 |
-
if child.tag != 'reasoning':
|
88 |
-
effect[child.tag] = child.text.strip() if child.text else None
|
89 |
-
if effect:
|
90 |
-
result[tag].append(effect)
|
91 |
-
|
92 |
-
# Convert to nested DataFrame
|
93 |
-
df_data = {}
|
94 |
-
for key, value in result.items():
|
95 |
-
if isinstance(value, dict):
|
96 |
-
for sub_key, sub_value in value.items():
|
97 |
-
df_data[(key, '1', sub_key)] = [sub_value]
|
98 |
-
elif isinstance(value, list):
|
99 |
-
for i, item in enumerate(value):
|
100 |
-
for sub_key, sub_value in item.items():
|
101 |
-
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
|
102 |
-
else:
|
103 |
-
df_data[(key, '1', '')] = [value]
|
104 |
|
105 |
-
# Create multi-index DataFrame
|
106 |
-
df = pd.DataFrame(df_data)
|
107 |
-
df.columns = pd.MultiIndex.from_tuples(df.columns)
|
108 |
-
|
109 |
-
return df
|
110 |
-
except ET.ParseError as e:
|
111 |
-
print(f"XML parsing error: {str(e)}")
|
112 |
-
print(f"Problematic XML content: {xml_string[:500]}...") # Print first 500 chars of XML
|
113 |
-
return pd.DataFrame()
|
114 |
-
except Exception as e:
|
115 |
-
print(f"Error in parse_xml_response: {str(e)}")
|
116 |
-
print(f"Traceback: {traceback.format_exc()}")
|
117 |
-
return pd.DataFrame()
|
118 |
|
119 |
def get_response(file_id, assistant_id, max_retries=3):
|
120 |
for attempt in range(max_retries):
|
@@ -126,16 +55,24 @@ def get_response(file_id, assistant_id, max_retries=3):
|
|
126 |
"content": prompts.info_prompt,
|
127 |
"attachments": [
|
128 |
{"file_id": file_id, "tools": [{"type": "file_search"}]}
|
129 |
-
],
|
130 |
-
}
|
131 |
]
|
132 |
)
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
)
|
|
|
|
|
|
|
|
|
|
|
136 |
messages = list(
|
137 |
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
|
138 |
)
|
|
|
139 |
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
|
140 |
message_content = messages[0].content[0].text
|
141 |
annotations = message_content.annotations
|
@@ -150,6 +87,36 @@ def get_response(file_id, assistant_id, max_retries=3):
|
|
150 |
time.sleep(5)
|
151 |
else:
|
152 |
raise Exception("Max retries reached. Unable to get response from the model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def process(file_content):
|
155 |
try:
|
@@ -162,18 +129,18 @@ def process(file_content):
|
|
162 |
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
|
163 |
|
164 |
response = get_response(message_file.id, demo.id) # This now includes retry logic
|
165 |
-
|
|
|
|
|
166 |
|
167 |
if df.empty:
|
168 |
return "<p>No valid information could be extracted from the provided file.</p>"
|
169 |
|
170 |
-
#
|
171 |
-
|
172 |
-
df_transposed.columns = ['Category', 'Index', 'Field', 'Value']
|
173 |
-
df_transposed = df_transposed.sort_values(['Category', 'Index', 'Field'])
|
174 |
|
175 |
# Convert to HTML with some basic styling
|
176 |
-
html =
|
177 |
|
178 |
# Add some custom CSS for better readability
|
179 |
html = f"""
|
@@ -227,8 +194,7 @@ def gradio_interface():
|
|
227 |
def run_in_terminal():
|
228 |
print("Clinical Note Information Extractor")
|
229 |
print("This tool extracts key information from clinical notes in PDF format.")
|
230 |
-
|
231 |
-
file_path = input().strip()
|
232 |
|
233 |
if not os.path.exists(file_path):
|
234 |
print(f"Error: File not found at {file_path}")
|
|
|
4 |
import time
|
5 |
import gradio as gr
|
6 |
from openai import OpenAI
|
|
|
|
|
|
|
7 |
import prompts
|
8 |
import traceback
|
9 |
from io import StringIO
|
10 |
+
import pandas as pd
|
11 |
+
from typing import Dict, Any
|
12 |
+
|
13 |
+
from typing import List, Optional
|
14 |
+
from pydantic import BaseModel, Field
|
15 |
+
from structures import ClinicalInfo
|
16 |
+
|
17 |
|
18 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
19 |
|
20 |
model_name = "gpt-4o-2024-08-06"
|
21 |
+
# import pdb; pdb.set_trace()
|
22 |
try:
|
23 |
demo = client.beta.assistants.create(
|
24 |
name="Information Extractor",
|
25 |
+
instructions="Extract information from this note and return it as a JSON object.",
|
26 |
model=model_name,
|
27 |
tools=[{"type": "file_search"}],
|
28 |
)
|
29 |
+
|
30 |
except Exception as e:
|
31 |
print(f"Error creating assistant: {str(e)}")
|
32 |
raise
|
33 |
|
34 |
+
def parse_response(prompt):
|
35 |
+
chat_completion = client.beta.chat.completions.parse(
|
36 |
+
messages=[
|
37 |
+
{
|
38 |
+
"role": "user",
|
39 |
+
"content": prompt,
|
40 |
+
}
|
41 |
+
],
|
42 |
+
model=model_name,
|
43 |
+
response_format=ClinicalInfo,
|
44 |
+
)
|
45 |
+
return chat_completion.choices[0].message.parsed.model_dump()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def get_response(file_id, assistant_id, max_retries=3):
|
49 |
for attempt in range(max_retries):
|
|
|
55 |
"content": prompts.info_prompt,
|
56 |
"attachments": [
|
57 |
{"file_id": file_id, "tools": [{"type": "file_search"}]}
|
58 |
+
],}
|
|
|
59 |
]
|
60 |
)
|
61 |
+
# import pdb; pdb.set_trace()
|
62 |
+
run = client.beta.threads.runs.create(
|
63 |
+
thread_id=thread.id,
|
64 |
+
assistant_id=assistant_id,
|
65 |
+
instructions="Please provide your response as a valid JSON object.",
|
66 |
)
|
67 |
+
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
|
68 |
+
while run.status != "completed":
|
69 |
+
time.sleep(1)
|
70 |
+
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
|
71 |
+
|
72 |
messages = list(
|
73 |
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
|
74 |
)
|
75 |
+
|
76 |
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
|
77 |
message_content = messages[0].content[0].text
|
78 |
annotations = message_content.annotations
|
|
|
87 |
time.sleep(5)
|
88 |
else:
|
89 |
raise Exception("Max retries reached. Unable to get response from the model.")
|
90 |
+
|
91 |
+
def clinical_info_to_dataframe(clinical_info: Dict[str, Any]) -> pd.DataFrame:
|
92 |
+
"""
|
93 |
+
Convert ClinicalInfo dictionary to a DataFrame.
|
94 |
+
"""
|
95 |
+
data = []
|
96 |
+
for field, value in clinical_info.items():
|
97 |
+
if isinstance(value, dict):
|
98 |
+
for sub_field, sub_value in value.items():
|
99 |
+
data.append({
|
100 |
+
'Category': field,
|
101 |
+
'Field': sub_field,
|
102 |
+
'Value': str(sub_value)
|
103 |
+
})
|
104 |
+
elif isinstance(value, list):
|
105 |
+
for i, item in enumerate(value):
|
106 |
+
for sub_field, sub_value in item.items():
|
107 |
+
data.append({
|
108 |
+
'Category': f"{field}_{i+1}",
|
109 |
+
'Field': sub_field,
|
110 |
+
'Value': str(sub_value)
|
111 |
+
})
|
112 |
+
elif value is None:
|
113 |
+
data.append({
|
114 |
+
'Category': field,
|
115 |
+
'Field': 'value',
|
116 |
+
'Value': 'None'
|
117 |
+
})
|
118 |
+
return pd.DataFrame(data)
|
119 |
+
|
120 |
|
121 |
def process(file_content):
|
122 |
try:
|
|
|
129 |
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
|
130 |
|
131 |
response = get_response(message_file.id, demo.id) # This now includes retry logic
|
132 |
+
response_prompt = f"Please parse the following response into the correct format: {response}"
|
133 |
+
clinical_info = parse_response(response_prompt)
|
134 |
+
df = clinical_info_to_dataframe(clinical_info)
|
135 |
|
136 |
if df.empty:
|
137 |
return "<p>No valid information could be extracted from the provided file.</p>"
|
138 |
|
139 |
+
# Sort the DataFrame
|
140 |
+
df = df.sort_values(['Category', 'Field'])
|
|
|
|
|
141 |
|
142 |
# Convert to HTML with some basic styling
|
143 |
+
html = df.to_html(index=False, classes='table table-striped table-bordered', escape=False)
|
144 |
|
145 |
# Add some custom CSS for better readability
|
146 |
html = f"""
|
|
|
194 |
def run_in_terminal():
|
195 |
print("Clinical Note Information Extractor")
|
196 |
print("This tool extracts key information from clinical notes in PDF format.")
|
197 |
+
file_path = "../clinicalnotes_raw/0b7wtxiunxwploe6tnnluh0l84qg.pdf"
|
|
|
198 |
|
199 |
if not os.path.exists(file_path):
|
200 |
print(f"Error: File not found at {file_path}")
|
structures.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, List
|
2 |
+
from typing_extensions import Literal
|
3 |
+
from pydantic import BaseModel, Field as FieldInfo
|
4 |
+
|
5 |
+
class Name(BaseModel):
|
6 |
+
reasoning: str
|
7 |
+
first_name: str
|
8 |
+
last_name: str
|
9 |
+
|
10 |
+
class DateInfo(BaseModel):
|
11 |
+
reasoning: str
|
12 |
+
date: str
|
13 |
+
|
14 |
+
class SexInfo(BaseModel):
|
15 |
+
reasoning: str
|
16 |
+
sex: str
|
17 |
+
|
18 |
+
class ChemoInfo(BaseModel):
|
19 |
+
reasoning: str
|
20 |
+
drug: str
|
21 |
+
date: Optional[str] = None
|
22 |
+
|
23 |
+
class TreatmentInfo(BaseModel):
|
24 |
+
reasoning: str
|
25 |
+
treatment: str
|
26 |
+
date: Optional[str] = None
|
27 |
+
|
28 |
+
class MedicationInfo(BaseModel):
|
29 |
+
reasoning: str
|
30 |
+
medication: str
|
31 |
+
date: Optional[str] = None
|
32 |
+
|
33 |
+
class SurgeryInfo(BaseModel):
|
34 |
+
reasoning: str
|
35 |
+
resection: str
|
36 |
+
|
37 |
+
class SurgeryOutcomeInfo(BaseModel):
|
38 |
+
reasoning: str
|
39 |
+
outcome: str
|
40 |
+
|
41 |
+
class MetastasisInfo(BaseModel):
|
42 |
+
reasoning: str
|
43 |
+
metastasis: str
|
44 |
+
|
45 |
+
class PharmacyInfo(BaseModel):
|
46 |
+
reasoning: str
|
47 |
+
pharmacy: str
|
48 |
+
|
49 |
+
class AdverseEffectInfo(BaseModel):
|
50 |
+
reasoning: str
|
51 |
+
medication: str
|
52 |
+
dosage: Optional[str] = None
|
53 |
+
date: Optional[str] = None
|
54 |
+
description: str
|
55 |
+
|
56 |
+
class WeightInfo(BaseModel):
|
57 |
+
reasoning: str
|
58 |
+
weight: str
|
59 |
+
|
60 |
+
class ClinicalInfo(BaseModel):
|
61 |
+
patient_name: Optional[Name] = None
|
62 |
+
date_of_birth: Optional[DateInfo] = None
|
63 |
+
sex: Optional[SexInfo] = None
|
64 |
+
traditional_chemo: Optional[List[ChemoInfo]] = None
|
65 |
+
other_cancer_treatments: Optional[List[TreatmentInfo]] = None
|
66 |
+
other_conmeds: Optional[List[MedicationInfo]] = None
|
67 |
+
surgery: Optional[SurgeryInfo] = None
|
68 |
+
surgery_outcome: Optional[SurgeryOutcomeInfo] = None
|
69 |
+
metastasis_at_time_of_diagnosis: Optional[MetastasisInfo] = None
|
70 |
+
compounding_pharmacy: Optional[PharmacyInfo] = None
|
71 |
+
adverse_effects: Optional[List[AdverseEffectInfo]] = None
|
72 |
+
date_of_death: Optional[DateInfo] = None
|
73 |
+
weight: Optional[WeightInfo] = None
|