Spaces:
Sleeping
Sleeping
File size: 9,942 Bytes
9ae2c40 a73fff6 95174f7 9ae2c40 fc217ff 9ae2c40 95174f7 9ae2c40 95174f7 9ae2c40 95174f7 9ae2c40 95174f7 9ae2c40 6adea60 95174f7 9ae2c40 95174f7 6adea60 95174f7 9ae2c40 6adea60 9ae2c40 95174f7 6adea60 95174f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import glob
import json
import os
import time
import gradio as gr
from openai import OpenAI
import xml.etree.ElementTree as ET
import re
import pandas as pd
import prompts
import traceback
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "gpt-4o-2024-08-06"
try:
demo = client.beta.assistants.create(
name="Information Extractor",
instructions="Extract information from this note.",
model=model_name,
tools=[{"type": "file_search"}],
)
except Exception as e:
print(f"Error creating assistant: {str(e)}")
raise
def parse_xml_response(xml_string: str) -> pd.DataFrame:
"""
Parse the XML response from the model and extract all fields into a dictionary,
then convert it to a pandas DataFrame with a nested index.
"""
try:
# Extract only the XML content between the first and last tags
xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
if xml_content:
xml_string = xml_content.group(0)
else:
print("No valid XML content found.")
return pd.DataFrame()
root = ET.fromstring(xml_string)
result = {}
for element in root:
tag = element.tag
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
result[tag] = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
**{child.tag: child.text.strip() if child.text else None
for child in element if child.tag != 'reasoning'}
}
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
if tag not in result:
result[tag] = []
reasoning = element.find('reasoning')
for item in element:
if item.tag in ['drug', 'treatment', 'medication']:
date_element = element.find('date')
result[tag].append({
'reasoning': reasoning.text.strip() if reasoning is not None else None,
'name': item.text.strip() if item.text else None,
'date': date_element.text.strip() if date_element is not None and date_element.text else None
})
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
result[tag] = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
**{child.tag: child.text.strip() if child.text else None
for child in element if child.tag != 'reasoning'}
}
elif tag == 'compounding_pharmacy':
result[tag] = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
}
elif tag == 'adverse_effects':
if tag not in result:
result[tag] = []
effect = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
}
for child in element:
if child.tag != 'reasoning':
effect[child.tag] = child.text.strip() if child.text else None
if effect:
result[tag].append(effect)
# Convert to nested DataFrame
df_data = {}
for key, value in result.items():
if isinstance(value, dict):
for sub_key, sub_value in value.items():
df_data[(key, '1', sub_key)] = [sub_value]
elif isinstance(value, list):
for i, item in enumerate(value):
for sub_key, sub_value in item.items():
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
else:
df_data[(key, '1', '')] = [value]
# Create multi-index DataFrame
df = pd.DataFrame(df_data)
df.columns = pd.MultiIndex.from_tuples(df.columns)
return df
except ET.ParseError as e:
print(f"XML parsing error: {str(e)}")
print(f"Problematic XML content: {xml_string[:500]}...") # Print first 500 chars of XML
return pd.DataFrame()
except Exception as e:
print(f"Error in parse_xml_response: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
return pd.DataFrame()
def get_response(file_id, assistant_id):
try:
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": prompts.info_prompt,
"attachments": [
{"file_id": file_id, "tools": [{"type": "file_search"}]}
],
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id, assistant_id=assistant_id
)
messages = list(
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
)
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
message_content = messages[0].content[0].text
annotations = message_content.annotations
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, f"")
return message_content.value
except Exception as e:
print(f"Error in get_response: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
raise
def process(file_content):
try:
if not os.path.exists("cache"):
os.makedirs("cache")
file_name = f"cache/{time.time()}.pdf"
with open(file_name, "wb") as f:
f.write(file_content)
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
response = get_response(message_file.id, demo.id)
df = parse_xml_response(response)
if df.empty:
return "<p>No valid information could be extracted from the provided file.</p>"
# Transpose the DataFrame
df_transposed = df.T.reset_index()
df_transposed.columns = ['Category', 'Index', 'Field', 'Value']
df_transposed = df_transposed.sort_values(['Category', 'Index', 'Field'])
# Convert to HTML with some basic styling
html = df_transposed.to_html(index=False, classes='table table-striped table-bordered', escape=False)
# Add some custom CSS for better readability
html = f"""
<style>
.table {{
width: 100%;
max-width: 100%;
margin-bottom: 1rem;
background-color: transparent;
}}
.table td, .table th {{
padding: .75rem;
vertical-align: top;
border-top: 1px solid #dee2e6;
}}
.table thead th {{
vertical-align: bottom;
border-bottom: 2px solid #dee2e6;
}}
.table tbody + tbody {{
border-top: 2px solid #dee2e6;
}}
.table-striped tbody tr:nth-of-type(odd) {{
background-color: rgba(0,0,0,.05);
}}
</style>
{html}
"""
return html
except Exception as e:
error_message = f"An error occurred while processing the file: {str(e)}"
print(error_message)
print(f"Traceback: {traceback.format_exc()}")
return f"<p>{error_message}</p>"
def gradio_interface():
upload_component = gr.File(label="Upload PDF", type="binary")
output_component = gr.HTML(label="Extracted Information")
demo = gr.Interface(
fn=process,
inputs=upload_component,
outputs=output_component,
title="Clinical Note Information Extractor",
description="This tool extracts key information from clinical notes in PDF format.",
)
demo.queue()
demo.launch()
def run_in_terminal():
print("Clinical Note Information Extractor")
print("This tool extracts key information from clinical notes in PDF format.")
print("Enter the path to your PDF file:")
file_path = input().strip()
if not os.path.exists(file_path):
print(f"Error: File not found at {file_path}")
return
try:
with open(file_path, "rb") as file:
file_content = file.read()
result = process(file_content)
if result.startswith("<p>"):
# Error message
print(result[3:-4]) # Remove <p> tags
else:
# Save the HTML output to a file
output_file = f"output_{time.time()}.html"
with open(output_file, "w", encoding="utf-8") as f:
f.write(result)
print(f"Extraction completed. Results saved to {output_file}")
# Also print a simplified version to the console
df = pd.read_html(result)[0]
print("\nExtracted Information:")
for _, row in df.iterrows():
print(f"{row['Category']} - {row['Field']}: {row['Value']}")
except Exception as e:
print(f"An error occurred while processing the file: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
if __name__ == "__main__":
try:
gradio_interface()
# run_in_terminal()
except Exception as e:
print(f"Error launching Gradio interface: {str(e)}")
print(f"Traceback: {traceback.format_exc()}") |