File size: 9,942 Bytes
9ae2c40
 
 
 
 
 
 
 
 
a73fff6
95174f7
9ae2c40
fc217ff
9ae2c40
 
 
95174f7
 
 
 
 
 
 
 
 
 
9ae2c40
 
 
 
 
 
 
95174f7
 
 
 
 
 
 
 
9ae2c40
95174f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
95174f7
 
 
 
 
 
9ae2c40
 
6adea60
95174f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
 
95174f7
 
 
 
 
 
 
 
 
6adea60
95174f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6adea60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
95174f7
 
6adea60
95174f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import glob
import json
import os
import time
import gradio as gr
from openai import OpenAI
import xml.etree.ElementTree as ET
import re
import pandas as pd
import prompts
import traceback

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

model_name = "gpt-4o-2024-08-06"

try:
    demo = client.beta.assistants.create(
        name="Information Extractor",
        instructions="Extract information from this note.",
        model=model_name,
        tools=[{"type": "file_search"}],
    )
except Exception as e:
    print(f"Error creating assistant: {str(e)}")
    raise

def parse_xml_response(xml_string: str) -> pd.DataFrame:
    """
    Parse the XML response from the model and extract all fields into a dictionary,
    then convert it to a pandas DataFrame with a nested index.
    """
    try:
        # Extract only the XML content between the first and last tags
        xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
        if xml_content:
            xml_string = xml_content.group(0)
        else:
            print("No valid XML content found.")
            return pd.DataFrame()

        root = ET.fromstring(xml_string)

        result = {}

        for element in root:
            tag = element.tag
            if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
                result[tag] = {
                    'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
                    **{child.tag: child.text.strip() if child.text else None 
                       for child in element if child.tag != 'reasoning'}
                }
            elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
                if tag not in result:
                    result[tag] = []
                reasoning = element.find('reasoning')
                for item in element:
                    if item.tag in ['drug', 'treatment', 'medication']:
                        date_element = element.find('date')
                        result[tag].append({
                            'reasoning': reasoning.text.strip() if reasoning is not None else None,
                            'name': item.text.strip() if item.text else None,
                            'date': date_element.text.strip() if date_element is not None and date_element.text else None
                        })
            elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
                result[tag] = {
                    'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
                    **{child.tag: child.text.strip() if child.text else None 
                       for child in element if child.tag != 'reasoning'}
                }
            elif tag == 'compounding_pharmacy':
                result[tag] = {
                    'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
                    'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
                }
            elif tag == 'adverse_effects':
                if tag not in result:
                    result[tag] = []
                effect = {
                    'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
                }
                for child in element:
                    if child.tag != 'reasoning':
                        effect[child.tag] = child.text.strip() if child.text else None
                if effect:
                    result[tag].append(effect)

        # Convert to nested DataFrame
        df_data = {}
        for key, value in result.items():
            if isinstance(value, dict):
                for sub_key, sub_value in value.items():
                    df_data[(key, '1', sub_key)] = [sub_value]
            elif isinstance(value, list):
                for i, item in enumerate(value):
                    for sub_key, sub_value in item.items():
                        df_data[(key, f"{i+1}", sub_key)] = [sub_value]
            else:
                df_data[(key, '1', '')] = [value]

        # Create multi-index DataFrame
        df = pd.DataFrame(df_data)
        df.columns = pd.MultiIndex.from_tuples(df.columns)
        
        return df
    except ET.ParseError as e:
        print(f"XML parsing error: {str(e)}")
        print(f"Problematic XML content: {xml_string[:500]}...")  # Print first 500 chars of XML
        return pd.DataFrame()
    except Exception as e:
        print(f"Error in parse_xml_response: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")
        return pd.DataFrame()

def get_response(file_id, assistant_id):
    try:
        thread = client.beta.threads.create(
            messages=[
                {
                    "role": "user",
                    "content": prompts.info_prompt,
                    "attachments": [
                        {"file_id": file_id, "tools": [{"type": "file_search"}]}
                    ],
                }
            ]
        )
        run = client.beta.threads.runs.create_and_poll(
            thread_id=thread.id, assistant_id=assistant_id
        )
        messages = list(
            client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
        )
        assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
        message_content = messages[0].content[0].text
        annotations = message_content.annotations
        for index, annotation in enumerate(annotations):
            message_content.value = message_content.value.replace(annotation.text, f"")
        return message_content.value
    except Exception as e:
        print(f"Error in get_response: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")
        raise

def process(file_content):
    try:
        if not os.path.exists("cache"):
            os.makedirs("cache")
        file_name = f"cache/{time.time()}.pdf"
        with open(file_name, "wb") as f:
            f.write(file_content)

        message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")

        response = get_response(message_file.id, demo.id)
        df = parse_xml_response(response)
        
        if df.empty:
            return "<p>No valid information could be extracted from the provided file.</p>"

        # Transpose the DataFrame
        df_transposed = df.T.reset_index()
        df_transposed.columns = ['Category', 'Index', 'Field', 'Value']
        df_transposed = df_transposed.sort_values(['Category', 'Index', 'Field'])

        # Convert to HTML with some basic styling
        html = df_transposed.to_html(index=False, classes='table table-striped table-bordered', escape=False)
        
        # Add some custom CSS for better readability
        html = f"""
        <style>
        .table {{
            width: 100%;
            max-width: 100%;
            margin-bottom: 1rem;
            background-color: transparent;
        }}
        .table td, .table th {{
            padding: .75rem;
            vertical-align: top;
            border-top: 1px solid #dee2e6;
        }}
        .table thead th {{
            vertical-align: bottom;
            border-bottom: 2px solid #dee2e6;
        }}
        .table tbody + tbody {{
            border-top: 2px solid #dee2e6;
        }}
        .table-striped tbody tr:nth-of-type(odd) {{
            background-color: rgba(0,0,0,.05);
        }}
        </style>
        {html}
        """
        
        return html
    except Exception as e:
        error_message = f"An error occurred while processing the file: {str(e)}"
        print(error_message)
        print(f"Traceback: {traceback.format_exc()}")
        return f"<p>{error_message}</p>"

def gradio_interface():
    upload_component = gr.File(label="Upload PDF", type="binary")
    output_component = gr.HTML(label="Extracted Information")

    demo = gr.Interface(
        fn=process,
        inputs=upload_component,
        outputs=output_component,
        title="Clinical Note Information Extractor",
        description="This tool extracts key information from clinical notes in PDF format.",
    )
    demo.queue()
    demo.launch()

def run_in_terminal():
    print("Clinical Note Information Extractor")
    print("This tool extracts key information from clinical notes in PDF format.")
    print("Enter the path to your PDF file:")
    file_path = input().strip()

    if not os.path.exists(file_path):
        print(f"Error: File not found at {file_path}")
        return

    try:
        with open(file_path, "rb") as file:
            file_content = file.read()
        
        result = process(file_content)
        
        if result.startswith("<p>"):
            # Error message
            print(result[3:-4])  # Remove <p> tags
        else:
            # Save the HTML output to a file
            output_file = f"output_{time.time()}.html"
            with open(output_file, "w", encoding="utf-8") as f:
                f.write(result)
            print(f"Extraction completed. Results saved to {output_file}")
            
            # Also print a simplified version to the console
            df = pd.read_html(result)[0]
            print("\nExtracted Information:")
            for _, row in df.iterrows():
                print(f"{row['Category']} - {row['Field']}: {row['Value']}")

    except Exception as e:
        print(f"An error occurred while processing the file: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")


if __name__ == "__main__":
    try:
        gradio_interface()
        # run_in_terminal()
    except Exception as e:
        print(f"Error launching Gradio interface: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")