File size: 8,119 Bytes
9ae2c40
 
 
 
 
 
a73fff6
95174f7
0e0266f
9d23c0f
 
 
 
 
 
 
9ae2c40
fc217ff
9ae2c40
 
9d23c0f
95174f7
 
 
9d23c0f
95174f7
 
 
9d23c0f
95174f7
 
 
9ae2c40
9d23c0f
 
 
 
 
 
 
 
 
 
 
 
95174f7
9ae2c40
0e0266f
 
 
 
 
 
 
 
 
 
9d23c0f
0e0266f
 
9d23c0f
 
 
 
 
0e0266f
9d23c0f
 
 
 
 
0e0266f
 
 
9d23c0f
0e0266f
 
 
 
 
 
 
 
 
 
 
 
 
 
9d23c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
 
95174f7
 
 
 
 
 
 
 
 
0e0266f
9d23c0f
 
 
95174f7
 
 
 
9d23c0f
 
95174f7
 
9d23c0f
95174f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6adea60
 
 
9d23c0f
6adea60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2c40
95174f7
 
6adea60
95174f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import glob
import json
import os
import time
import gradio as gr
from openai import OpenAI
import prompts
import traceback
from io import StringIO
import pandas as pd
from typing import Dict, Any

from typing import List, Optional
from pydantic import BaseModel, Field
from structures import ClinicalInfo


client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

model_name = "gpt-4o-2024-08-06"
# import pdb; pdb.set_trace()
try:
    demo = client.beta.assistants.create(
        name="Information Extractor",
        instructions="Extract information from this note and return it as a JSON object.",
        model=model_name,
        tools=[{"type": "file_search"}],
    )

except Exception as e:
    print(f"Error creating assistant: {str(e)}")
    raise

def parse_response(prompt):
    chat_completion = client.beta.chat.completions.parse(
        messages=[
            {
                "role": "user",
                "content": prompt,
            }
        ],
        model=model_name,
        response_format=ClinicalInfo,
    )
    return chat_completion.choices[0].message.parsed.model_dump()


def get_response(file_id, assistant_id, max_retries=3):
    for attempt in range(max_retries):
        try:
            thread = client.beta.threads.create(
                messages=[
                    {
                        "role": "user",
                        "content": prompts.info_prompt,
                        "attachments": [
                            {"file_id": file_id, "tools": [{"type": "file_search"}]}
                        ],}
                ]
            )
            # import pdb; pdb.set_trace()
            run = client.beta.threads.runs.create(
                thread_id=thread.id,
                assistant_id=assistant_id,
                instructions="Please provide your response as a valid JSON object.",
            )
            run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
            while run.status != "completed":
                time.sleep(1)
                run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
            
            messages = list(
                client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
            )
            
            assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
            message_content = messages[0].content[0].text
            annotations = message_content.annotations
            for index, annotation in enumerate(annotations):
                message_content.value = message_content.value.replace(annotation.text, f"")
            return message_content.value
        except Exception as e:
            print(f"Error in get_response (attempt {attempt + 1}): {str(e)}")
            print(f"Traceback: {traceback.format_exc()}")
            if attempt < max_retries - 1:
                print(f"Retrying in 5 seconds...")
                time.sleep(5)
            else:
                raise Exception("Max retries reached. Unable to get response from the model.")
            
def clinical_info_to_dataframe(clinical_info: Dict[str, Any]) -> pd.DataFrame:
    """
    Convert ClinicalInfo dictionary to a DataFrame.
    """
    data = []
    for field, value in clinical_info.items():
        if isinstance(value, dict):
            for sub_field, sub_value in value.items():
                data.append({
                    'Category': field,
                    'Field': sub_field,
                    'Value': str(sub_value)
                })
        elif isinstance(value, list):
            for i, item in enumerate(value):
                for sub_field, sub_value in item.items():
                    data.append({
                        'Category': f"{field}_{i+1}",
                        'Field': sub_field,
                        'Value': str(sub_value)
                    })
        elif value is None:
            data.append({
                'Category': field,
                'Field': 'value',
                'Value': 'None'
            })
    return pd.DataFrame(data)


def process(file_content):
    try:
        if not os.path.exists("cache"):
            os.makedirs("cache")
        file_name = f"cache/{time.time()}.pdf"
        with open(file_name, "wb") as f:
            f.write(file_content)

        message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")

        response = get_response(message_file.id, demo.id)  # This now includes retry logic
        response_prompt = f"Please parse the following response into the correct format: {response}"
        clinical_info = parse_response(response_prompt)
        df = clinical_info_to_dataframe(clinical_info)
        
        if df.empty:
            return "<p>No valid information could be extracted from the provided file.</p>"

        # Sort the DataFrame
        df = df.sort_values(['Category', 'Field'])

        # Convert to HTML with some basic styling
        html = df.to_html(index=False, classes='table table-striped table-bordered', escape=False)
        
        # Add some custom CSS for better readability
        html = f"""
        <style>
        .table {{
            width: 100%;
            max-width: 100%;
            margin-bottom: 1rem;
            background-color: transparent;
        }}
        .table td, .table th {{
            padding: .75rem;
            vertical-align: top;
            border-top: 1px solid #dee2e6;
        }}
        .table thead th {{
            vertical-align: bottom;
            border-bottom: 2px solid #dee2e6;
        }}
        .table tbody + tbody {{
            border-top: 2px solid #dee2e6;
        }}
        .table-striped tbody tr:nth-of-type(odd) {{
            background-color: rgba(0,0,0,.05);
        }}
        </style>
        {html}
        """
        
        return html
    except Exception as e:
        error_message = f"An error occurred while processing the file: {str(e)}"
        print(error_message)
        print(f"Traceback: {traceback.format_exc()}")
        return f"<p>{error_message}</p>"

def gradio_interface():
    upload_component = gr.File(label="Upload PDF", type="binary")
    output_component = gr.HTML(label="Extracted Information")

    demo = gr.Interface(
        fn=process,
        inputs=upload_component,
        outputs=output_component,
        title="Clinical Note Information Extractor",
        description="This tool extracts key information from clinical notes in PDF format.",
    )
    demo.queue()
    demo.launch()

def run_in_terminal():
    print("Clinical Note Information Extractor")
    print("This tool extracts key information from clinical notes in PDF format.")
    file_path = "../clinicalnotes_raw/0b7wtxiunxwploe6tnnluh0l84qg.pdf"

    if not os.path.exists(file_path):
        print(f"Error: File not found at {file_path}")
        return

    try:
        with open(file_path, "rb") as file:
            file_content = file.read()
        
        result = process(file_content)
        
        if result.startswith("<p>"):
            # Error message
            print(result[3:-4])  # Remove <p> tags
        else:
            # Save the HTML output to a file
            output_file = f"output_{time.time()}.html"
            with open(output_file, "w", encoding="utf-8") as f:
                f.write(result)
            print(f"Extraction completed. Results saved to {output_file}")
            
            # Also print a simplified version to the console
            df = pd.read_html(result)[0]
            print("\nExtracted Information:")
            for _, row in df.iterrows():
                print(f"{row['Category']} - {row['Field']}: {row['Value']}")

    except Exception as e:
        print(f"An error occurred while processing the file: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")


if __name__ == "__main__":
    try:
        gradio_interface()
        # run_in_terminal()
    except Exception as e:
        print(f"Error launching Gradio interface: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")