Spaces:
Sleeping
Sleeping
Create app.py
Browse filescompute people similarity
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
from insightface.app import FaceAnalysis
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
np.int = np.int32
|
9 |
+
np.float = np.float64
|
10 |
+
np.bool = np.bool_
|
11 |
+
|
12 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
13 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
14 |
+
|
15 |
+
def calculate(photo1, photo2):
|
16 |
+
if photo1 is None or photo2 is None:
|
17 |
+
return 0
|
18 |
+
image1 = cv2.imread(photo1)
|
19 |
+
faces1 = app.get(image1)
|
20 |
+
if len(faces1) < 1:
|
21 |
+
return 0
|
22 |
+
faceid_embeds1 = torch.from_numpy(faces1[0].normed_embedding).unsqueeze(0)
|
23 |
+
|
24 |
+
image2 = cv2.imread(photo2)
|
25 |
+
faces2 = app.get(image2)
|
26 |
+
if len(faces2) < 1:
|
27 |
+
return 0
|
28 |
+
faceid_embeds2 = torch.from_numpy(faces2[0].normed_embedding).unsqueeze(0)
|
29 |
+
|
30 |
+
cos = nn.CosineSimilarity(dim=1, eps=1e-10)
|
31 |
+
cos_similarity = cos(faceid_embeds1, faceid_embeds2)
|
32 |
+
return cos_similarity
|
33 |
+
|
34 |
+
with gr.Blocks() as demo:
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
face_photo1 = gr.Image(label="Photo of Person 1", type="filepath")
|
38 |
+
face_photo2 = gr.Image(label="Photo of Person 2", type="filepath")
|
39 |
+
greet_btn = gr.Button("Calculate")
|
40 |
+
with gr.Column():
|
41 |
+
output = gr.JSON()
|
42 |
+
|
43 |
+
greet_btn.click(fn=calculate, inputs=[face_photo1, face_photo2], outputs=output, api_name="calculate_face_similarity")
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
demo.launch()
|