keyishen commited on
Commit
e6321df
·
verified ·
1 Parent(s): 39b1d1d

Create app.py

Browse files

compute people similarity

Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ from insightface.app import FaceAnalysis
4
+ import torch
5
+ import torch.nn as nn
6
+ import numpy as np
7
+
8
+ np.int = np.int32
9
+ np.float = np.float64
10
+ np.bool = np.bool_
11
+
12
+ app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
13
+ app.prepare(ctx_id=0, det_size=(640, 640))
14
+
15
+ def calculate(photo1, photo2):
16
+ if photo1 is None or photo2 is None:
17
+ return 0
18
+ image1 = cv2.imread(photo1)
19
+ faces1 = app.get(image1)
20
+ if len(faces1) < 1:
21
+ return 0
22
+ faceid_embeds1 = torch.from_numpy(faces1[0].normed_embedding).unsqueeze(0)
23
+
24
+ image2 = cv2.imread(photo2)
25
+ faces2 = app.get(image2)
26
+ if len(faces2) < 1:
27
+ return 0
28
+ faceid_embeds2 = torch.from_numpy(faces2[0].normed_embedding).unsqueeze(0)
29
+
30
+ cos = nn.CosineSimilarity(dim=1, eps=1e-10)
31
+ cos_similarity = cos(faceid_embeds1, faceid_embeds2)
32
+ return cos_similarity
33
+
34
+ with gr.Blocks() as demo:
35
+ with gr.Row():
36
+ with gr.Column():
37
+ face_photo1 = gr.Image(label="Photo of Person 1", type="filepath")
38
+ face_photo2 = gr.Image(label="Photo of Person 2", type="filepath")
39
+ greet_btn = gr.Button("Calculate")
40
+ with gr.Column():
41
+ output = gr.JSON()
42
+
43
+ greet_btn.click(fn=calculate, inputs=[face_photo1, face_photo2], outputs=output, api_name="calculate_face_similarity")
44
+
45
+ if __name__ == "__main__":
46
+ demo.launch()