Spaces:
Sleeping
Sleeping
import torch | |
import spaces | |
import gradio as gr | |
from threading import Thread | |
import re | |
import time | |
import tempfile | |
import os | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from langchain.prompts import PromptTemplate | |
from langchain.vectorstores import FAISS | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_text_splitters import SentenceTransformersTokenTextSplitter | |
from PIL import Image | |
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer | |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") | |
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
model.to("cuda:0") | |
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
ASR_MODEL_NAME = "openai/whisper-large-v3" | |
ASR_BATCH_SIZE = 8 | |
ASR_CHUNK_LENGTH_S = 30 | |
TEMP_FILE_LIMIT_MB = 1024 #2048 | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
device = 0 if torch.cuda.is_available() else "cpu" | |
asr_pl = pipeline( | |
task="automatic-speech-recognition", | |
model=ASR_MODEL_NAME, | |
chunk_length_s=ASR_CHUNK_LENGTH_S, | |
device=device, | |
) | |
application_title = "Enlight Innovations Limited -- Demo" | |
application_description = "This demo is desgined to illustrate our basic ideas and feasibility in implementation." | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
def transcribe(asr_inputs, task): | |
#print("Type: " + str(type(asr_inputs))) | |
if asr_inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = asr_pl(asr_inputs, batch_size=ASR_BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
"""Gradio User Interface""" | |
#audio_input = gr.Audio(sources="upload", type="filepath", label="Audio: from file") #gr.Audio(sources="microphone", type="filepath", label="Audio: from microphone") | |
#audio_input_choice = gr.Radio(["audio file", "microphone"], label="Audio Input Source", value="audio file") # | |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input Source") | |
task_input_choice = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") | |
task_output = gr.Textbox(label="Transcribed Output") | |
transcribe_interface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
audio_input, | |
#audio_input_choice, | |
task_input_choice, | |
], | |
outputs=[ | |
task_output, #"text", | |
], | |
title=application_title, | |
description=application_description, | |
allow_flagging="never", | |
) | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
chatbot_main = gr.Chatbot(label="Extraction Output") | |
chatbot_main_input = gr.MultimodalTextbox({"text": "Choose the referred material(s) and ask your question.", "files":[]}) | |
chatbot_sys_output = gr.Textbox(value="You are a friendly Chatbot.", label="System Message") | |
chatbot_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max. New Tokens") | |
chatbot_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
chatbot_top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
) | |
chat_interface = gr.ChatInterface( | |
respond, | |
multimodal=True, | |
title=application_title, | |
description=application_description, | |
chatbot=chatbot_main, | |
textbox=chatbot_main_input, | |
additional_inputs=[ | |
chatbot_sys_output, | |
chatbot_max_tokens, | |
chatbot_temperature, | |
chatbot_top_p, | |
], | |
) | |
with gr.Blocks() as demo: | |
gr.TabbedInterface([transcribe_interface, chat_interface], ["Step 1: Transcribe", "Step 2: Extract"]) | |
""" | |
def clear_audio_input(): | |
return None | |
""" | |
def update_task_input(task_input_choice): | |
if task_input_choice == "transcribe": | |
return gr.Textbox(label="Transcribed Output") #Audio(sources="upload", label="Audio: from file") | |
elif task_input_choice == "translate": | |
return gr.Textbox(label="Translated Output") #Audio(sources="microphone", label="Audio: from microphone") | |
#task_input_choice.input(fn=clear_audio_input, outputs=audio_input).then(fn=update_audio_input, | |
task_input_choice.input(fn=update_task_input, | |
inputs=task_input_choice, | |
outputs=task_output | |
) | |
def on_selected_tab(selected_tab): | |
print(f"Selected tab: {selected_tab['value']}, Selected state: {selected_tab['selected']}") | |
demo.select(on_selected_tab) | |
if __name__ == "__main__": | |
demo.queue().launch() #demo.launch() |