Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,8 @@ HF_TOKEN = os.environ.get("Inference_Calls", None)
|
|
26 |
# from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer
|
27 |
# processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
28 |
# model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
29 |
-
"""
|
|
|
30 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
31 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
32 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -37,7 +38,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
37 |
terminators = [
|
38 |
tokenizer.eos_token_id,
|
39 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
40 |
-
]
|
|
|
41 |
from huggingface_hub import InferenceClient
|
42 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
43 |
client = InferenceClient(model_id, api_key="HF_TOKEN")
|
@@ -86,7 +88,8 @@ def respond(
|
|
86 |
|
87 |
messages.append({"role": "user", "content": message})
|
88 |
|
89 |
-
"""
|
|
|
90 |
messages,
|
91 |
add_generation_prompt=True,
|
92 |
return_tensors="pt"
|
@@ -113,7 +116,8 @@ def respond(
|
|
113 |
for text in streamer:
|
114 |
outputs.append(text)
|
115 |
#print(outputs)
|
116 |
-
yield "".join(outputs)
|
|
|
117 |
|
118 |
response = ""
|
119 |
|
|
|
26 |
# from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer
|
27 |
# processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
28 |
# model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
29 |
+
"""
|
30 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
32 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
33 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
38 |
terminators = [
|
39 |
tokenizer.eos_token_id,
|
40 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
41 |
+
]
|
42 |
+
"""
|
43 |
from huggingface_hub import InferenceClient
|
44 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
45 |
client = InferenceClient(model_id, api_key="HF_TOKEN")
|
|
|
88 |
|
89 |
messages.append({"role": "user", "content": message})
|
90 |
|
91 |
+
"""
|
92 |
+
input_ids = tokenizer.apply_chat_template(
|
93 |
messages,
|
94 |
add_generation_prompt=True,
|
95 |
return_tensors="pt"
|
|
|
116 |
for text in streamer:
|
117 |
outputs.append(text)
|
118 |
#print(outputs)
|
119 |
+
yield "".join(outputs)
|
120 |
+
"""
|
121 |
|
122 |
response = ""
|
123 |
|