import torch import spaces import gradio as gr from threading import Thread import re import time import tempfile import os from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read from sentence_transformers import SentenceTransformer from langchain.prompts import PromptTemplate from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import WebBaseLoader from langchain_text_splitters import SentenceTransformersTokenTextSplitter from PIL import Image HF_TOKEN = os.environ["Inference_Calls"] print(HF_TOKEN) # from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer # processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") # model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) """ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) model_id = "meta-llama/Meta-Llama-3-8B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", token=HF_TOKEN ).to("cuda:0") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] """ from huggingface_hub import InferenceClient model_id = "meta-llama/Meta-Llama-3-8B-Instruct" client = InferenceClient(model=model_id, token="HF_TOKEN") embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") ASR_MODEL_NAME = "openai/whisper-large-v3" ASR_BATCH_SIZE = 8 ASR_CHUNK_LENGTH_S = 30 TEMP_FILE_LIMIT_MB = 1024 #2048 """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") device = 0 if torch.cuda.is_available() else "cpu" asr_pl = pipeline( task="automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=ASR_CHUNK_LENGTH_S, device=device, ) application_title = "Enlight Innovations Limited -- Demo" application_description = "This demo is designed to illustrate our basic ideas and feasibility in implementation." @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response @spaces.GPU def transcribe(asr_inputs, task): #print("Type: " + str(type(asr_inputs))) if asr_inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = asr_pl(asr_inputs, batch_size=ASR_BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text.strip() """Gradio User Interface""" #audio_input = gr.Audio(sources="upload", type="filepath", label="Audio: from file") #gr.Audio(sources="microphone", type="filepath", label="Audio: from microphone") #audio_input_choice = gr.Radio(["audio file", "microphone"], label="Audio Input Source", value="audio file") # # (transcribe) Interface components audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input Source") task_input_choice = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") task_output = gr.Textbox(label="Transcribed Output") # ChatInterface components chatbot_main = gr.Chatbot(label="Extraction Output") chatbot_main_input = gr.MultimodalTextbox({"text": "Choose the referred material(s) and ask your question.", "files":[]}) chatbot_sys_output = gr.Textbox(value="You are a friendly Chatbot.", label="System Message") chatbot_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max. New Tokens") chatbot_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") chatbot_top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ) transcribe_interface = gr.Interface( fn=transcribe, inputs=[ audio_input, #audio_input_choice, task_input_choice, ], outputs=[ task_output, #"text", ], title=application_title, description=application_description, allow_flagging="never", ) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chat_interface = gr.ChatInterface( respond, multimodal=True, title=application_title, description=application_description, chatbot=chatbot_main, textbox=chatbot_main_input, additional_inputs=[ chatbot_sys_output, chatbot_max_tokens, chatbot_temperature, chatbot_top_p, ], ) with gr.Blocks() as demo: gr.TabbedInterface([transcribe_interface, chat_interface], ["Step 1: Transcribe", "Step 2: Extract"]) """ def clear_audio_input(): return None """ def update_task_input(task_input_choice): if task_input_choice == "transcribe": return gr.Textbox(label="Transcribed Output") #Audio(sources="upload", label="Audio: from file") elif task_input_choice == "translate": return gr.Textbox(label="Translated Output") #Audio(sources="microphone", label="Audio: from microphone") #task_input_choice.input(fn=clear_audio_input, outputs=audio_input).then(fn=update_audio_input, task_input_choice.input(fn=update_task_input, inputs=task_input_choice, outputs=task_output ) def update_chatbot_main_input(updated_text): return {"text": updated_text, "files":[]} task_output.change(fn=update_chatbot_main_input, inputs=task_output, outputs=chatbot_main_input ) if __name__ == "__main__": demo.queue().launch() #demo.launch()