import torch import spaces import gradio as gr from threading import Thread import re import time import tempfile import os from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read from PIL import Image from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) model.to("cuda:0") ASR_MODEL_NAME = "openai/whisper-large-v3" ASR_BATCH_SIZE = 8 ASR_CHUNK_LENGTH_S = 30 TEMP_FILE_LIMIT_MB = 1000 from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") device = 0 if torch.cuda.is_available() else "cpu" asr_pl = pipeline( task="automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=ASR_CHUNK_LENGTH_S, device=device, ) @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response @spaces.GPU def transcribe(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = asr_pl(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text demo = gr.Blocks() transcribe_interface """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chat_interface = gr.ChatInterface( respond, title="Enlight Innovations Limited -- Demo", description="This demo is desgined to illustrate our basic idea and feasibility in implementation.", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with demo: gr.TabbedInterface([transcribe_interface, chat_interface], ["Step 1: Transcribe", "Step 2: "]) if __name__ == "__main__": demo.queue().launch() #demo.launch()