Spaces:
Sleeping
Sleeping
Commit
·
29da466
1
Parent(s):
c0c7da3
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,55 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Streamlit UI
|
11 |
st.title("Emotion Detection App")
|
12 |
|
13 |
# User input
|
14 |
-
|
15 |
-
if not sentence:
|
16 |
-
st.warning("Please enter a sentence.")
|
17 |
|
18 |
# Emotion detection
|
19 |
if st.button("Detect Emotion"):
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
5 |
+
from sklearn.naive_bayes import MultinomialNB
|
6 |
+
from sklearn.metrics import accuracy_score, classification_report
|
7 |
|
8 |
+
# Load the dataset
|
9 |
+
@st.cache
|
10 |
+
def load_data():
|
11 |
+
df = pd.read_csv("tweet_emotions.csv")
|
12 |
+
return df
|
13 |
+
|
14 |
+
df = load_data()
|
15 |
+
|
16 |
+
# Train a Naive Bayes classifier
|
17 |
+
@st.cache
|
18 |
+
def train_classifier(data):
|
19 |
+
vectorizer = CountVectorizer()
|
20 |
+
X = vectorizer.fit_transform(data['content'])
|
21 |
+
y = data['sentiment']
|
22 |
+
|
23 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
24 |
+
|
25 |
+
naive_bayes_model = MultinomialNB()
|
26 |
+
naive_bayes_model.fit(X_train, y_train)
|
27 |
+
|
28 |
+
return naive_bayes_model, vectorizer, X_test, y_test
|
29 |
+
|
30 |
+
naive_bayes_model, vectorizer, X_test, y_test = train_classifier(df)
|
31 |
|
32 |
# Streamlit UI
|
33 |
st.title("Emotion Detection App")
|
34 |
|
35 |
# User input
|
36 |
+
tweet = st.text_area("Enter a tweet:")
|
|
|
|
|
37 |
|
38 |
# Emotion detection
|
39 |
if st.button("Detect Emotion"):
|
40 |
+
tweet_vectorized = vectorizer.transform([tweet])
|
41 |
+
prediction = naive_bayes_model.predict(tweet_vectorized)
|
42 |
+
st.success(f"Predicted Emotion: {prediction[0]}")
|
43 |
+
|
44 |
+
# Display the dataset
|
45 |
+
st.subheader("Dataset Preview:")
|
46 |
+
st.write(df.head())
|
47 |
+
|
48 |
+
# Model evaluation
|
49 |
+
st.subheader("Model Evaluation:")
|
50 |
+
y_pred = naive_bayes_model.predict(X_test)
|
51 |
+
accuracy = accuracy_score(y_test, y_pred)
|
52 |
+
classification_rep = classification_report(y_test, y_pred)
|
53 |
+
|
54 |
+
st.write(f"Accuracy: {accuracy:.4f}")
|
55 |
+
st.write("Classification Report:\n", classification_rep)
|