Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
labels = { | |
0 : "Incorrect", | |
1 : "Partialy correct/Incomplete", | |
2 : "correct" | |
} | |
print('currently loading model') | |
model = AutoModelForSequenceClassification.from_pretrained("./model") | |
tokenizer = AutoTokenizer.from_pretrained("./tokenizer") | |
print('model loaded successfully') | |
def grade(model_answer, student_answer): | |
inputs = tokenizer(model_answer, student_answer, padding="max_length", truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
preds = torch.nn.functional.softmax(logits, dim=1) | |
preds = np.concatenate(preds.numpy()).ravel().tolist() | |
print(preds) | |
return {l:p for p, l in zip(preds, labels.values())} | |
demo = gr.Interface( | |
fn=grade, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Model answer here"), | |
gr.Textbox(lines=2, placeholder="Student answer here") | |
], | |
outputs="label", | |
title="Grading short answer questions", | |
examples=[ | |
[ | |
"A prototype is used to simulate the behavior of portions of the desired software product", | |
"a prototype is used to simulate the behavior of a portion of the desired software product" | |
], | |
[ | |
"A variable in programming is a location in memory that can be used to store a value", | |
"no answer" | |
], | |
[ | |
"A computer system consists of a CPU, Memory, Input, and output devices.", | |
"a CPU only" | |
], | |
], | |
) | |
demo.launch() |