asag / app.py
khaled5321's picture
Add application file
366bd77
import gradio as gr
import numpy as np
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
labels = {
0 : "Incorrect",
1 : "Partialy correct/Incomplete",
2 : "correct"
}
print('currently loading model')
model = AutoModelForSequenceClassification.from_pretrained("./model")
tokenizer = AutoTokenizer.from_pretrained("./tokenizer")
print('model loaded successfully')
def grade(model_answer, student_answer):
inputs = tokenizer(model_answer, student_answer, padding="max_length", truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
preds = torch.nn.functional.softmax(logits, dim=1)
preds = np.concatenate(preds.numpy()).ravel().tolist()
print(preds)
return {l:p for p, l in zip(preds, labels.values())}
demo = gr.Interface(
fn=grade,
inputs=[
gr.Textbox(lines=2, placeholder="Model answer here"),
gr.Textbox(lines=2, placeholder="Student answer here")
],
outputs="label",
title="Grading short answer questions",
examples=[
[
"A prototype is used to simulate the behavior of portions of the desired software product",
"a prototype is used to simulate the behavior of a portion of the desired software product"
],
[
"A variable in programming is a location in memory that can be used to store a value",
"no answer"
],
[
"A computer system consists of a CPU, Memory, Input, and output devices.",
"a CPU only"
],
],
)
demo.launch()