khanfs commited on
Commit
f8eeb2a
·
verified ·
1 Parent(s): 3ecb591

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # Load the pre-trained model and tokenizer
6
+ model_name = "khanfs/ChemSolubilityBERTa"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Define the prediction function
11
+ def predict_solubility(smiles_string):
12
+ inputs = tokenizer(smiles_string, return_tensors='pt', truncation=True, padding='max_length', max_length=128)
13
+ with torch.no_grad():
14
+ outputs = model(**inputs)
15
+ solubility = outputs.logits.item()
16
+ return f"Predicted Solubility: {solubility:.4f} log mol/L"
17
+
18
+ # Gradio interface
19
+ iface = gr.Interface(
20
+ fn=predict_solubility,
21
+ inputs="text",
22
+ outputs="text",
23
+ title="ChemSolubilityBERTa",
24
+ description="Enter a SMILES string to predict its aqueous solubility using ChemSolubilityBERTa.",
25
+ examples=[["CCO"], ["CC(C)=O"], ["C1=CC=CC=C1"]] # Example SMILES strings for ethanol, acetone, and benzene
26
+ )
27
+
28
+ # Launch the app
29
+ iface.launch()