Spaces:
Running
on
Zero
Running
on
Zero
Delete ORIGINAL_README.md
Browse files- ORIGINAL_README.md +0 -166
ORIGINAL_README.md
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
|
2 |
-
|
3 |
-
[\[🏠 Sa2VA\]](https://lxtgh.github.io/project/sa2va) [\[📜 arXiv\]](https://arxiv.org/abs/2501.04001) [\[🤗 HuggingFace\]](https://huggingface.co/collections/ByteDance/sa2va-model-zoo-677e3084d71b5f108d00e093) [\[🎥 Introduction\]]() [\[🧑💻 GitHub\]](https://github.com/magic-research/Sa2VA) [\[Online Demo (Sa2VA-4B)\]](https://5512470799b6b35fbc.gradio.live/)
|
4 |
-
|
5 |
-
|
6 |
-
[**Haobo Yuan**](https://yuanhaobo.me/)<sup>1*</sup> · [**Xiangtai Li**](https://scholar.google.com/citations?user=NmHgX-wAAAAJ)<sup>2*†</sup> · [**Tao Zhang**](https://zhang-tao-whu.github.io/)<sup>2,3*</sup> · [**Zilong Huang**](http://speedinghzl.github.io/)<sup>2</sup> · [**Shilin Xu**](https://xushilin1.github.io/)<sup>4</sup> ·[**Shunping Ji**](https://scholar.google.com/citations?user=FjoRmF4AAAAJ&hl=en)<sup>3</sup> ·[**Yunhai Tong**](https://scholar.google.com/citations?user=T4gqdPkAAAAJ&hl=zh-CN)<sup>4</sup> ·
|
7 |
-
|
8 |
-
[**Lu Qi**](https://luqi.info/)<sup>2</sup> · [**Jiashi Feng**](https://sites.google.com/site/jshfeng/)<sup>2</sup> · [**Ming-Hsuan Yang**](https://faculty.ucmerced.edu/mhyang/)<sup>1</sup>
|
9 |
-
|
10 |
-
<sup>1</sup>UC Merced    <sup>2</sup>ByteDance Seed    <sup>3</sup>WHU    <sup>4</sup>PKU
|
11 |
-
|
12 |
-
† project lead * the first three authors equally contribute to the work.
|
13 |
-
|
14 |
-

|
15 |
-
|
16 |
-
## Overiew
|
17 |
-
This repository contains the code for the paper "Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos".
|
18 |
-
|
19 |
-
Sa2VA is the the first unified model for dense grounded understanding of both images and videos. Unlike existing multi-modal large language models, which are often limited to specific modalities and tasks, Sa2VA supports a wide range of image and video tasks, including referring segmentation and conversation, with minimal one-shot instruction tuning. Sa2VA combines SAM-2, a foundation video segmentation model, with LLaVA, an advanced vision-language model, and unifies text, image, and video into a shared LLM token space.
|
20 |
-
|
21 |
-
## Model Zoo
|
22 |
-
We provide the following models:
|
23 |
-
| Model Name | Base MLLM | Language Part | HF Link |
|
24 |
-
|:----------:|:-----------------------------------------------------------------:|:-----------------------------------------------------------------------------:|:----------------------------------------------------:|
|
25 |
-
| Sa2VA-1B | [InternVL2.0-1B](https://huggingface.co/OpenGVLab/InternVL2-1B) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-1B) |
|
26 |
-
| Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-4B) |
|
27 |
-
| Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-8B) |
|
28 |
-
|
29 |
-
## Gradio Demos
|
30 |
-
|
31 |
-
We provide a script that implements interactive chat using gradio, which requires installing `gradio==4.42.0`. You can try it to quickly build a chat interface locally.
|
32 |
-
```shell
|
33 |
-
PYTHONPATH=. python projects/llava_sam2/gradio/app.py ByteDance/Sa2VA-4B
|
34 |
-
```
|
35 |
-
|
36 |
-
## Quick Start
|
37 |
-
|
38 |
-
Our Sa2VA model is available on 🤗HuggingFace. With very few steps, you can try it with your own data. You can install the `demo/requirements.txt` to avoid training-only packages.
|
39 |
-
|
40 |
-
|
41 |
-
**Option1 - scripts:**
|
42 |
-
|
43 |
-
Supposing you have a folder (`PATH_TO_FOLDER`) that contains images of a video, you can use the following script to chat with the Sa2VA model or segment the objects in the videos.
|
44 |
-
|
45 |
-
```bash
|
46 |
-
> cd scripts
|
47 |
-
> python demo.py PATH_TO_FOLDER --model_path ByteDance/Sa2VA-8B --work-dir OUTPUT_DIR --text "<image>Please describe the video content."
|
48 |
-
```
|
49 |
-
|
50 |
-
If the output contains the segmentation results, the results will be saved to `OUTPUT_DIR`.
|
51 |
-
|
52 |
-
**Option2 - Jupter Notebook:**
|
53 |
-
|
54 |
-
Please refer to `demo.ipynb`.
|
55 |
-
|
56 |
-
## Demo
|
57 |
-
|
58 |
-
<details open>
|
59 |
-
<summary>Demo 1</summary>
|
60 |
-
Input Video (Source: La La Land 2016):
|
61 |
-
|
62 |
-

|
63 |
-
|
64 |
-
Instruction: "Please segment the girl wearing the yellow dress."
|
65 |
-
</details>
|
66 |
-
|
67 |
-
<details open>
|
68 |
-
<summary>Demo 2</summary>
|
69 |
-
Input Video (Source: La La Land 2016):
|
70 |
-
|
71 |
-

|
72 |
-
|
73 |
-
Instruction: "Please segment the main character."
|
74 |
-
</details>
|
75 |
-
|
76 |
-
|
77 |
-
<details open>
|
78 |
-
<summary>Demo 3</summary>
|
79 |
-
Input Video (Source: Internet):
|
80 |
-
|
81 |
-

|
82 |
-
|
83 |
-
Instruction: "Please segment the person wearing sun glasses."
|
84 |
-
</details>
|
85 |
-
|
86 |
-
|
87 |
-
<details open>
|
88 |
-
<summary>Demo 4</summary>
|
89 |
-
Input Video (Source: Internet):
|
90 |
-
|
91 |
-

|
92 |
-
|
93 |
-
Instruction: "Instruction: "Please segment the singing girl."
|
94 |
-
</details>
|
95 |
-
|
96 |
-
<details open>
|
97 |
-
<summary>Demo 5</summary>
|
98 |
-
Input Video:
|
99 |
-
|
100 |
-

|
101 |
-
|
102 |
-
Instruction: "What is the atmosphere of the scene?"
|
103 |
-
|
104 |
-
Answer: "The scene has a dark and mysterious atmosphere, with the men dressed in suits and ties, and the dimly lit room."
|
105 |
-
</details>
|
106 |
-
|
107 |
-
|
108 |
-
## Training
|
109 |
-
<details open>
|
110 |
-
<summary>Installation</summary>
|
111 |
-
|
112 |
-
1. Please install the python and pytorch first:
|
113 |
-
```bash
|
114 |
-
> conda create -n vlm python=3.10
|
115 |
-
> conda activate vlm
|
116 |
-
> conda install pytorch==2.3.1 torchvision==0.18.1 pytorch-cuda=12.1 cuda -c pytorch -c "nvidia/label/cuda-12.1.0" -c "nvidia/label/cuda-12.1.1"
|
117 |
-
```
|
118 |
-
|
119 |
-
2. Install mmcv:
|
120 |
-
```bash
|
121 |
-
> pip install mmcv==2.2.0 -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.3/index.html
|
122 |
-
```
|
123 |
-
|
124 |
-
3. Install other dependencies:
|
125 |
-
```bash
|
126 |
-
> pip install -r requirements.txt
|
127 |
-
```
|
128 |
-
</details>
|
129 |
-
|
130 |
-
<details open>
|
131 |
-
<summary>Pretrained Model Preparation</summary>
|
132 |
-
|
133 |
-
You are expected to download the following pretrained models and place them in the `./pretrained` directory:
|
134 |
-
- [sam2_hiera_large.pt](https://huggingface.co/facebook/sam2-hiera-large)
|
135 |
-
- [InternVL2_5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B)
|
136 |
-
|
137 |
-
</details>
|
138 |
-
|
139 |
-
<details open>
|
140 |
-
<summary>Data Preparation</summary>
|
141 |
-
|
142 |
-
(TODO) Please download the training datasets and place them in the `data` directory. The download link is [here](https://huggingface.co/datasets/Dense-World/Sa2VA-Training).
|
143 |
-
|
144 |
-
</details>
|
145 |
-
|
146 |
-
|
147 |
-
<details open>
|
148 |
-
<summary>Training Script</summary>
|
149 |
-
|
150 |
-
Please run the following script to train:
|
151 |
-
```bash
|
152 |
-
> bash tools/dist.sh train projects/llava_sam2/configs/sa2va_4b.py 8
|
153 |
-
```
|
154 |
-
</details>
|
155 |
-
|
156 |
-
|
157 |
-
## References
|
158 |
-
If you find this repository useful, please consider referring the following paper:
|
159 |
-
```
|
160 |
-
@article{sa2va,
|
161 |
-
title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos},
|
162 |
-
author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan},
|
163 |
-
journal={arXiv},
|
164 |
-
year={2025}
|
165 |
-
}
|
166 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|