File size: 3,855 Bytes
f04732f
fccbf81
f04732f
 
 
 
 
 
08bc998
 
f04732f
fccbf81
 
 
f04732f
fccbf81
 
 
 
 
f04732f
 
 
 
69f9849
 
 
 
fccbf81
69f9849
 
fccbf81
69f9849
fccbf81
 
 
 
69f9849
 
fccbf81
 
 
 
 
 
 
2f2072e
fccbf81
 
 
 
 
69f9849
 
fccbf81
 
 
 
 
 
 
 
 
 
69f9849
 
 
fccbf81
f04732f
69f9849
 
 
 
 
 
 
 
f04732f
 
3edc738
f04732f
3edc738
f04732f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

tokenizer = AutoTokenizer.from_pretrained(
    'qnguyen3/nanoLLaVA',
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    'qnguyen3/nanoLLaVA',
    torch_dtype=torch.float16,
    device_map='auto',
    trust_remote_code=True)
model.to("cuda:0")

@spaces.GPU
def bot_streaming(message, history):
    chat_history = []
    if message["files"]:
      image = message["files"][-1]["path"]
    else:
      for i, hist in enumerate(history):
        if type(hist[0])==tuple:
          image = hist[0][0]
          image_turn = i
            
    if len(history) > 0 and image is not None:
        chat_history.append({"role": "user", "content": f'<image>\n{history[1][0]}'})
        chat_history.append({"role": "assistant", "content": history[1][1] })
        for human, assistant in history[2:]:
            chat_history.append({"role": "user", "content": human })
            chat_history.append({"role": "assistant", "content": assistant })
        chat_history.append({"role": "user", "content": message['text']})
    elif len(history) > 0 and image is None:
        for human, assistant in history:
            chat_history.append({"role": "user", "content": human })
            chat_history.append({"role": "assistant", "content": assistant })
        chat_history.append({"role": "user", "content": message['text']})
    elif len(history) == 0 and image is not None:
        chat_history.append({"role": "user", "content": f"<image>\n{message['text']}"})
    elif len(history) == 0 and image is None:
        chat_history.append({"role": "user", "content": message['text'] })

    # if image is None:
    #     gr.Error("You need to upload an image for LLaVA to work.")
    prompt=f"[INST] <image>\n{message['text']} [/INST]"
    image = Image.open(image).convert("RGB")
    text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True)
    text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
    input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
    streamer = TextIteratorStreamer(input_ids, **{"skip_special_tokens": True})
    image = Image.open(image)
    image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
    generation_kwargs = dict(inputs, images=image_tensor, streamer=streamer, max_new_tokens=100)
    generated_text = ""
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    text_prompt =f"<|im_start|>user\n{message['text']}<|im_end|>"
    
    buffer = ""
    for new_text in streamer:
      
      buffer += new_text
      
      generated_text_without_prompt = buffer[len(text_prompt):]
      time.sleep(0.04)
      yield generated_text_without_prompt


demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
                                                                      {"text": "How to make this pastry?", "files":["./baklava.png"]}], 
                        description="Try [LLaVA NeXT](https://huggingface.co/docs/transformers/main/en/model_doc/llava_next) in this demo (more specifically, the [Mistral-7B variant](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
                        stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)