Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import warnings | |
import torch | |
from transformers import AutoTokenizer, AutoConfig, BitsAndBytesConfig, logging, AutoModelForCausalLM | |
logging.set_verbosity_error() | |
def load_pretrained_model(model_path, model_base, model_name, model_type, load_8bit=False, load_4bit=False, | |
device_map="auto", device="cuda", **kwargs): | |
if model_type not in {'qwen1.5-1.8b', 'qwen1.5-0.5b'}: | |
raise ValueError(f"Unknown Model Type {model_type}") | |
kwargs = {**kwargs} | |
# if device != "cuda": | |
# kwargs['device_map'] = {"": device} | |
if load_8bit: | |
kwargs['load_in_8bit'] = True | |
elif load_4bit: | |
kwargs['load_in_4bit'] = True | |
kwargs['quantization_config'] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
else: | |
kwargs['torch_dtype'] = torch.float16 | |
if 'lora' in model_name.lower() and model_base is None: | |
warnings.warn( | |
'There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument.') | |
if 'lora' in model_name.lower() and model_base is not None: | |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
print('Loading nanoLLaVA from base model...') | |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b': | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, trust_remote_code=True, | |
**kwargs) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter( | |
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
model.model.embed_tokens.weight = torch.nn.Parameter( | |
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
print('Loading additional nanoLLaVA weights...') | |
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): | |
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder) | |
return torch.load(cache_file, map_location='cpu') | |
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') | |
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in | |
non_lora_trainables.items()} | |
if any(k.startswith('model.model.') for k in non_lora_trainables): | |
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in | |
non_lora_trainables.items()} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
print('Loading LoRA weights...') | |
model = PeftModel.from_pretrained(model, model_path) | |
print('Merging LoRA weights...') | |
model = model.merge_and_unload() | |
print('Model is loaded...') | |
elif model_base is not None: | |
# this may be mm projector only | |
print('Loading nanoLLaVA from base model...') | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b': | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, trust_remote_code=True, | |
**kwargs) | |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') | |
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
else: | |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b': | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
vision_tower.to(device=device, dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
if model.generation_config.pad_token_id is None: | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
model.to('cuda') | |
return tokenizer, model, image_processor, context_len |