Spaces:
Running
on
Zero
Running
on
Zero
Update serve/builder.py
Browse files- serve/builder.py +6 -6
serve/builder.py
CHANGED
@@ -37,8 +37,8 @@ def load_pretrained_model(model_path, model_base, model_name, model_type, load_8
|
|
37 |
|
38 |
print('Loading nanoLLaVA from base model...')
|
39 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
40 |
-
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
41 |
-
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained,
|
42 |
**kwargs)
|
43 |
|
44 |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
@@ -82,8 +82,8 @@ def load_pretrained_model(model_path, model_base, model_name, model_type, load_8
|
|
82 |
|
83 |
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
84 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
85 |
-
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
86 |
-
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained,
|
87 |
**kwargs)
|
88 |
|
89 |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
@@ -91,8 +91,8 @@ def load_pretrained_model(model_path, model_base, model_name, model_type, load_8
|
|
91 |
model.load_state_dict(mm_projector_weights, strict=False)
|
92 |
else:
|
93 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
94 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
95 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
96 |
|
97 |
model.resize_token_embeddings(len(tokenizer))
|
98 |
|
|
|
37 |
|
38 |
print('Loading nanoLLaVA from base model...')
|
39 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True, trust_remote_code=True)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, trust_remote_code=True,
|
42 |
**kwargs)
|
43 |
|
44 |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
|
|
82 |
|
83 |
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
84 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True, trust_remote_code=True)
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, trust_remote_code=True,
|
87 |
**kwargs)
|
88 |
|
89 |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
|
|
91 |
model.load_state_dict(mm_projector_weights, strict=False)
|
92 |
else:
|
93 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=True)
|
95 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
96 |
|
97 |
model.resize_token_embeddings(len(tokenizer))
|
98 |
|