diff --git "a/modeling_llava_qwen2.py" "b/modeling_llava_qwen2.py" deleted file mode 100644--- "a/modeling_llava_qwen2.py" +++ /dev/null @@ -1,2341 +0,0 @@ -from transformers import AutoConfig, AutoModelForCausalLM -from abc import ABC, abstractmethod - -''' -# Adapted from https://huggingface.co/MILVLG/imp-v1-3b/blob/main/vision_encoder.py -''' - -from typing import Optional, Tuple, Union, Dict -from dataclasses import dataclass -from functools import partial, reduce -from PIL import Image -import torch.utils.checkpoint -from torch import nn -import torch -import spaces -from transformers.image_processing_utils import BatchFeature, get_size_dict -from transformers.image_transforms import (convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format, ) -from transformers.image_utils import (ChannelDimension, PILImageResampling, to_numpy_array, ) -from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ModelOutput -import subprocess - -torch.set_default_device('cuda') -subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) - -class SigLipImageProcessor: - def __init__(self, - image_mean=(0.5, 0.5, 0.5), - image_std=(0.5, 0.5, 0.5), - size=(384, 384), - crop_size: Dict[str, int] = None, - resample=PILImageResampling.BICUBIC, - rescale_factor=1 / 255, - data_format=ChannelDimension.FIRST): - crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384} - crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") - - self.image_mean = image_mean - self.image_std = image_std - self.size = size - self.resample = resample - self.rescale_factor = rescale_factor - self.data_format = data_format - self.crop_size = crop_size - - def preprocess(self, images, return_tensors): - if isinstance(images, Image.Image): - images = [images] - else: - assert isinstance(images, list) - - transforms = [ - convert_to_rgb, - to_numpy_array, - partial(resize, size=self.size, resample=self.resample, data_format=self.data_format), - partial(rescale, scale=self.rescale_factor, data_format=self.data_format), - partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format), - partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format), - ] - - images = reduce(lambda x, f: [*map(f, x)], transforms, images) - data = {"pixel_values": images} - - return BatchFeature(data=data, tensor_type=return_tensors) - - -from configuration_llava_qwen2 import SigLipVisionConfig - - -@dataclass -# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->SigLip -class SigLipVisionModelOutput(ModelOutput): - """ - Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. - - Args: - image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): - The image embeddings obtained by applying the projection layer to the pooler_output. - last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): - Sequence of hidden-states at the output of the last layer of the model. - hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + - one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. - - Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights after the attention softmax, used to compute the weighted average in the self-attention - heads. - """ - - image_embeds: Optional[torch.FloatTensor] = None - last_hidden_state: torch.FloatTensor = None - hidden_states: Optional[Tuple[torch.FloatTensor]] = None - attentions: Optional[Tuple[torch.FloatTensor]] = None - - -class SigLipVisionEmbeddings(nn.Module): - def __init__(self, config: SigLipVisionConfig): - super().__init__() - self.config = config - self.embed_dim = config.hidden_size - self.image_size = config.image_size - self.patch_size = config.patch_size - - self.patch_embedding = nn.Conv2d( - in_channels=config.num_channels, - out_channels=self.embed_dim, - kernel_size=self.patch_size, - stride=self.patch_size, - padding="valid", - ) - - self.num_patches = (self.image_size // self.patch_size) ** 2 - self.num_positions = self.num_patches - self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) - self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) - - def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: - patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] - embeddings = patch_embeds.flatten(2).transpose(1, 2) - - embeddings = embeddings + self.position_embedding(self.position_ids) - return embeddings - - -class SigLipAttention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper""" - - # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ - def __init__(self, config): - super().__init__() - self.config = config - self.embed_dim = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.embed_dim // self.num_heads - if self.head_dim * self.num_heads != self.embed_dim: - raise ValueError( - f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" - f" {self.num_heads})." - ) - self.scale = self.head_dim ** -0.5 - self.dropout = config.attention_dropout - - self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - """Input shape: Batch x Time x Channel""" - - batch_size, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - - k_v_seq_len = key_states.shape[-2] - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale - - if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): - raise ValueError( - f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): - raise ValueError( - f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" - ) - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) - - attn_output = self.out_proj(attn_output) - - return attn_output, attn_weights - - -# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->SigLip -class SigLipMLP(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.activation_fn = ACT2FN[config.hidden_act] - self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) - self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - hidden_states = self.fc1(hidden_states) - hidden_states = self.activation_fn(hidden_states) - hidden_states = self.fc2(hidden_states) - return hidden_states - - -# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->SigLip -class SigLipEncoderLayer(nn.Module): - def __init__(self, config: SigLipVisionConfig): - super().__init__() - self.embed_dim = config.hidden_size - self.self_attn = SigLipAttention(config) - self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) - self.mlp = SigLipMLP(config) - self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) - - # Ignore copy - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: torch.Tensor, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor]: - """ - Args: - hidden_states (`torch.FloatTensor`): - Input to the layer of shape `(batch, seq_len, embed_dim)`. - attention_mask (`torch.FloatTensor`): - Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. - output_attentions (`bool`, *optional*, defaults to `False`): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - """ - residual = hidden_states - - hidden_states = self.layer_norm1(hidden_states) - hidden_states, attn_weights = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - output_attentions=output_attentions, - ) - hidden_states = residual + hidden_states - - residual = hidden_states - hidden_states = self.layer_norm2(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (attn_weights,) - - return outputs - - -class SigLipPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained - models. - """ - - config_class = SigLipVisionConfig - base_model_prefix = "siglip" - supports_gradient_checkpointing = True - - def _init_weights(self, module): - """Initialize the weights""" - pass - - -# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->SigLip -class SigLipEncoder(nn.Module): - """ - Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a - [`SigLipEncoderLayer`]. - - Args: - config: SigLipVisionConfig - """ - - def __init__(self, config: SigLipVisionConfig): - super().__init__() - self.config = config - self.layers = nn.ModuleList([SigLipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) - self.gradient_checkpointing = False - - # Ignore copy - def forward( - self, - inputs_embeds, - attention_mask: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutput]: - r""" - Args: - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. - This is useful if you want more control over how to convert `input_ids` indices into associated vectors - than the model's internal embedding lookup matrix. - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors - for more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - encoder_states = () if output_hidden_states else None - all_attentions = () if output_attentions else None - - hidden_states = inputs_embeds - for encoder_layer in self.layers: - if output_hidden_states: - encoder_states = encoder_states + (hidden_states,) - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - encoder_layer.__call__, - hidden_states, - attention_mask, - output_attentions, - ) - else: - layer_outputs = encoder_layer( - hidden_states, - attention_mask, - output_attentions=output_attentions, - ) - - hidden_states = layer_outputs[0] - - if output_attentions: - all_attentions = all_attentions + (layer_outputs[1],) - - if output_hidden_states: - encoder_states = encoder_states + (hidden_states,) - - if not return_dict: - return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) - return BaseModelOutput( - last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions - ) - - -class SigLipVisionTransformer(nn.Module): - def __init__(self, config: SigLipVisionConfig): - super().__init__() - self.config = config - embed_dim = config.hidden_size - - self.embeddings = SigLipVisionEmbeddings(config) - self.encoder = SigLipEncoder(config) - self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) - self.head = SigLipMultiheadAttentionPoolingHead(config) - - def forward( - self, - pixel_values, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPooling]: - r""" - Returns: - - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - hidden_states = self.embeddings(pixel_values) - - encoder_outputs = self.encoder( - inputs_embeds=hidden_states, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - last_hidden_state = encoder_outputs[0] - last_hidden_state = self.post_layernorm(last_hidden_state) - - pooled_output = self.head(last_hidden_state) - - if not return_dict: - return (last_hidden_state, pooled_output) + encoder_outputs[1:] - - return BaseModelOutputWithPooling( - last_hidden_state=last_hidden_state, - pooler_output=pooled_output, - hidden_states=encoder_outputs.hidden_states, - attentions=encoder_outputs.attentions, - ) - - -class SigLipMultiheadAttentionPoolingHead(nn.Module): - """Multihead Attention Pooling.""" - - def __init__(self, config: SigLipVisionConfig): - super().__init__() - - self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) - self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) - self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - self.mlp = SigLipMLP(config) - - def forward(self, hidden_state): - batch_size = hidden_state.shape[0] - probe = self.probe.repeat(batch_size, 1, 1) - - hidden_state = self.attention(probe, hidden_state, hidden_state)[0] - - residual = hidden_state - hidden_state = self.layernorm(hidden_state) - hidden_state = residual + self.mlp(hidden_state) - - return hidden_state[:, 0] - - -class SigLipVisionModel(SigLipPreTrainedModel): - config_class = SigLipVisionConfig - main_input_name = "pixel_values" - _no_split_modules = ["SigLipEncoderLayer"] - - def __init__(self, config: SigLipVisionConfig): - super().__init__(config) - - self.vision_model = SigLipVisionTransformer(config) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self) -> nn.Module: - return self.vision_model.embeddings.patch_embedding - - def forward( - self, - pixel_values, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPooling]: - r""" - Returns: - - Examples: - - ```python - >>> from PIL import Image - >>> import requests - >>> from transformers import AutoProcessor, SigLipVisionModel - - >>> model = SigLipVisionModel.from_pretrained("google/siglip-base-patch16-224") - >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") - - >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" - >>> image = Image.open(requests.get(url, stream=True).raw) - - >>> inputs = processor(images=image, return_tensors="pt") - - >>> outputs = model(**inputs) - >>> last_hidden_state = outputs.last_hidden_state - >>> pooled_output = outputs.pooler_output # pooled features - ```""" - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - return self.vision_model( - pixel_values=pixel_values, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - -class SigLipVisionTower(nn.Module): - def __init__(self, vision_tower, vision_tower_cfg, delay_load=False): - super().__init__() - - self.is_loaded = False - - self.config = SigLipVisionConfig() - - self.vision_tower_name = vision_tower - - self.image_processor = SigLipImageProcessor() - - if not delay_load: - self.load_model() - else: - self.cfg_only = self.config - - def load_model(self): - if self.is_loaded: - return - - self.vision_tower = SigLipVisionModel.from_pretrained(self.vision_tower_name) - - del self.vision_tower.vision_model.encoder.layers[-1:] - self.vision_tower.vision_model.head = nn.Identity() - self.vision_tower.requires_grad_(False) - self.vision_tower.eval() - - self.is_loaded = True - - @torch.no_grad() - @spaces.GPU - def forward(self, images): - if type(images) is list: - image_features = [] - for image in images: - image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), - output_hidden_states=True) - image_feature = image_forward_out.hidden_states[-1].to(image.dtype) - assert image_features.shape[-2] == 729 - image_features.append(image_feature) - else: - image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), - output_hidden_states=True) - image_features = image_forward_outs.hidden_states[-1].to(images.dtype) - assert image_features.shape[-2] == 729 - - return image_features - - @property - def dummy_feature(self): - return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) - - @property - def dtype(self): - for p in self.vision_tower.parameters(): - return p.dtype - - @property - def device(self): - for p in self.vision_tower.parameters(): - return p.device - - @property - def hidden_size(self): - return self.config.hidden_size - - @property - def num_patches(self): - return (self.config.image_size // self.config.patch_size) ** 2 - - -def build_vision_tower(vision_tower_cfg, **kwargs): - vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) - - return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs) - - -import re - - -def build_vision_projector(config, delay_load=False, **kwargs): - projector_type = getattr(config, 'mm_projector_type', 'mlp2x_gelu') - - mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) - if mlp_gelu_match: - mlp_depth = int(mlp_gelu_match.group(1)) - modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] - for _ in range(1, mlp_depth): - modules.append(nn.GELU()) - modules.append(nn.Linear(config.hidden_size, config.hidden_size)) - return nn.Sequential(*modules) - - -# Model Constants -IGNORE_INDEX = -100 -IMAGE_TOKEN_INDEX = -200 - - -class LlavaMetaModel: - - def __init__(self, config): - super(LlavaMetaModel, self).__init__(config) - - if hasattr(config, "mm_vision_tower"): - self.vision_tower = build_vision_tower(config, delay_load=True) - self.mm_projector = build_vision_projector(config) - - def get_vision_tower(self): - vision_tower = getattr(self, 'vision_tower', None) - if type(vision_tower) is list: - vision_tower = vision_tower[0] - return vision_tower - - def initialize_vision_modules(self, model_args): - vision_tower = model_args.vision_tower - - pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter - - self.config.mm_vision_tower = vision_tower - - if self.get_vision_tower() is None: - vision_tower = build_vision_tower(model_args) - self.vision_tower = vision_tower - else: - vision_tower = self.vision_tower - vision_tower.load_model() - - self.config.use_mm_proj = True - self.config.mm_projector_type = getattr(model_args, 'mm_projector_type') - self.config.mm_hidden_size = vision_tower.hidden_size - - if getattr(self, 'mm_projector', None) is None: - self.mm_projector = build_vision_projector(self.config) - else: - # In case it is frozen by LoRA - for p in self.mm_projector.parameters(): - p.requires_grad = True - - if pretrain_mm_mlp_adapter is not None: - mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') - - def get_w(weights, keyword): - return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} - - self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) - - -class LlavaMetaForCausalLM(ABC): - - @abstractmethod - def get_model(self): - pass - - def get_vision_tower(self): - return self.get_model().get_vision_tower() - - def encode_images(self, images): - image_features = self.get_model().get_vision_tower().cuda()(images) - image_features = self.get_model().mm_projector(image_features) - return image_features - - def prepare_inputs_labels_for_multimodal( - self, input_ids, position_ids, attention_mask, past_key_values, labels, images - ): - vision_tower = self.get_vision_tower().cuda() - if vision_tower is None or images is None or input_ids.shape[1] == 1: - if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[ - 1] == 1: - target_shape = past_key_values[-1][-1].shape[-2] + 1 - attention_mask = torch.cat((attention_mask, torch.ones( - (attention_mask.shape[0], target_shape - attention_mask.shape[1]), - dtype=attention_mask.dtype, - device=attention_mask.device - )), dim=1) - position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 - return input_ids, position_ids, attention_mask, past_key_values, None, labels - - if type(images) is list or images.ndim == 5: - concat_images = torch.cat([image for image in images], dim=0) - image_features = self.encode_images(concat_images) - split_sizes = [image.shape[0] for image in images] - image_features = torch.split(image_features, split_sizes, dim=0) - image_features = [x.flatten(0, 1).to(self.device) for x in image_features] - else: - image_features = self.encode_images(images).to(self.device) - - # Let's just add dummy tensors if they do not exist, - # it is a headache to deal with None all the time. - # But it is not ideal, and if you have a better idea, - # please open an issue / submit a PR, thanks. - _labels = labels - _position_ids = position_ids - _attention_mask = attention_mask - if attention_mask is None: - attention_mask = torch.ones_like(input_ids, dtype=torch.bool) - else: - attention_mask = attention_mask.bool() - if position_ids is None: - position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) - if labels is None: - labels = torch.full_like(input_ids, IGNORE_INDEX) - - # remove the padding using attention_mask -- TODO: double check - input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in - zip(input_ids, attention_mask)] - labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] - - new_input_embeds = [] - new_labels = [] - cur_image_idx = 0 - for batch_idx, cur_input_ids in enumerate(input_ids): - num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() - if num_images == 0: - cur_image_features = image_features[cur_image_idx] - cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) - cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) - new_input_embeds.append(cur_input_embeds) - new_labels.append(labels[batch_idx]) - cur_image_idx += 1 - continue - - image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [ - cur_input_ids.shape[0]] - cur_input_ids_noim = [] - cur_labels = labels[batch_idx] - cur_labels_noim = [] - for i in range(len(image_token_indices) - 1): - cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1:image_token_indices[i + 1]]) - cur_labels_noim.append(cur_labels[image_token_indices[i] + 1:image_token_indices[i + 1]]) - split_sizes = [x.shape[0] for x in cur_labels_noim] - cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) - cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) - cur_new_input_embeds = [] - cur_new_labels = [] - - for i in range(num_images + 1): - cur_new_input_embeds.append(cur_input_embeds_no_im[i]) - cur_new_labels.append(cur_labels_noim[i]) - if i < num_images: - cur_image_features = image_features[cur_image_idx] - cur_image_idx += 1 - cur_new_input_embeds.append(cur_image_features) - cur_new_labels.append( - torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, - dtype=cur_labels.dtype)) - - cur_new_input_embeds = torch.cat(cur_new_input_embeds) - cur_new_labels = torch.cat(cur_new_labels) - - new_input_embeds.append(cur_new_input_embeds) - new_labels.append(cur_new_labels) - - # Truncate sequences to max length as image embeddings can make the sequence longer - tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) - if tokenizer_model_max_length is not None: - new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] - new_labels = [x[:tokenizer_model_max_length] for x in new_labels] - - # Combine them - max_len = max(x.shape[0] for x in new_input_embeds) - batch_size = len(new_input_embeds) - - new_input_embeds_padded = [] - new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, - device=new_labels[0].device) - attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) - position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) - - for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): - cur_len = cur_new_embed.shape[0] - if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": - new_input_embeds_padded.append(torch.cat(( - torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, - device=cur_new_embed.device), - cur_new_embed - ), dim=0)) - if cur_len > 0: - new_labels_padded[i, -cur_len:] = cur_new_labels - attention_mask[i, -cur_len:] = True - position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, - device=position_ids.device) - else: - new_input_embeds_padded.append(torch.cat(( - cur_new_embed, - torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, - device=cur_new_embed.device) - ), dim=0)) - if cur_len > 0: - new_labels_padded[i, :cur_len] = cur_new_labels - attention_mask[i, :cur_len] = True - position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, - device=position_ids.device) - - new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) - - if _labels is None: - new_labels = None - else: - new_labels = new_labels_padded - - if _attention_mask is None: - attention_mask = None - else: - attention_mask = attention_mask.to(dtype=_attention_mask.dtype) - - if _position_ids is None: - position_ids = None - - return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels - - -# coding=utf-8 -# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX -# and OPT implementations in this library. It has been modified from its -# original forms to accommodate minor architectural differences compared -# to GPT-NeoX and OPT used by the Meta AI team that trained the model. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" PyTorch Qwen2 model.""" -import inspect -import math -import warnings -from typing import List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss - -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache -from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa -from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ( - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_flash_attn_2_available, - is_flash_attn_greater_or_equal_2_10, - logging, - replace_return_docstrings, -) -from configuration_llava_qwen2 import Qwen2Config - - - -from flash_attn import flash_attn_func, flash_attn_varlen_func -from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa - -_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) - - -logger = logging.get_logger(__name__) - - -_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" -_CONFIG_FOR_DOC = "Qwen2Config" - -QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [ - "Qwen/Qwen2-7B-beta", - # See all Qwen2 models at https://huggingface.co/models?filter=qwen2 -] - - -# Copied from transformers.models.llama.modeling_llama._get_unpad_data -def _get_unpad_data(attention_mask): - seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) - indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() - max_seqlen_in_batch = seqlens_in_batch.max().item() - cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) - return ( - indices, - cu_seqlens, - max_seqlen_in_batch, - ) - - -# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2 -class Qwen2RMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - Qwen2RMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2 -class Qwen2RotaryEmbedding(nn.Module): - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): - super().__init__() - - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base - inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self._set_cos_sin_cache( - seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() - ) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) - - freqs = torch.outer(t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) - - def forward(self, x, seq_len=None): - # x: [bs, num_attention_heads, seq_len, head_size] - if seq_len > self.max_seq_len_cached: - self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) - - return ( - self.cos_cached[:seq_len].to(dtype=x.dtype), - self.sin_cached[:seq_len].to(dtype=x.dtype), - ) - - -# Copied from transformers.models.llama.modeling_llama.rotate_half -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb -def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): - """Applies Rotary Position Embedding to the query and key tensors. - - Args: - q (`torch.Tensor`): The query tensor. - k (`torch.Tensor`): The key tensor. - cos (`torch.Tensor`): The cosine part of the rotary embedding. - sin (`torch.Tensor`): The sine part of the rotary embedding. - position_ids (`torch.Tensor`): - The position indices of the tokens corresponding to the query and key tensors. For example, this can be - used to pass offsetted position ids when working with a KV-cache. - unsqueeze_dim (`int`, *optional*, defaults to 1): - The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and - sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note - that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and - k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes - cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have - the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. - Returns: - `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. - """ - cos = cos[position_ids].unsqueeze(unsqueeze_dim) - sin = sin[position_ids].unsqueeze(unsqueeze_dim) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2 -class Qwen2MLP(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.intermediate_size = config.intermediate_size - self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) - self.act_fn = ACT2FN[config.hidden_act] - - def forward(self, x): - return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - - -# Copied from transformers.models.llama.modeling_llama.repeat_kv -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, - num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) - - -class Qwen2Attention(nn.Module): - """ - Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer - and "Generating Long Sequences with Sparse Transformers". - """ - - def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): - super().__init__() - self.config = config - self.layer_idx = layer_idx - if layer_idx is None: - logger.warning_once( - f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " - "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " - "when creating this class." - ) - - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.num_key_value_heads = config.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.max_position_embeddings = config.max_position_embeddings - self.rope_theta = config.rope_theta - self.is_causal = True - self.attention_dropout = config.attention_dropout - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError( - f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" - f" and `num_heads`: {self.num_heads})." - ) - self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) - self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) - self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) - - self.rotary_emb = Qwen2RotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - base=self.rope_theta, - ) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - if self.layer_idx is None: - raise ValueError( - f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " - "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " - "with a layer index." - ) - kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class Qwen2FlashAttention2(Qwen2Attention): - """ - Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` - as the weights of the module stays untouched. The only required change would be on the forward pass - where it needs to correctly call the public API of flash attention and deal with padding tokens - in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom - config.max_window_layers layers. - """ - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. - # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. - # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). - self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, - ): - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - - # overwrite attention_mask with padding_mask - attention_mask = kwargs.pop("padding_mask") - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - if self.layer_idx is None: - raise ValueError( - f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " - "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " - "with a layer index." - ) - kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) - - # Because the input can be padded, the absolute sequence length depends on the max position id. - rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 - cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) - - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - use_sliding_windows = ( - _flash_supports_window_size - and getattr(self.config, "sliding_window", None) is not None - and kv_seq_len > self.config.sliding_window - and self.config.use_sliding_window - ) - - if not _flash_supports_window_size: - logger.warning_once( - "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" - " make sure to upgrade flash-attn library." - ) - - if past_key_value is not None: - # Activate slicing cache only if the config has a value `sliding_windows` attribute - cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 - if ( - getattr(self.config, "sliding_window", None) is not None - and kv_seq_len > self.config.sliding_window - and cache_has_contents - ): - slicing_tokens = 1 - self.config.sliding_window - - past_key = past_key_value[self.layer_idx][0] - past_value = past_key_value[self.layer_idx][1] - - past_key = past_key[:, :, slicing_tokens:, :].contiguous() - past_value = past_value[:, :, slicing_tokens:, :].contiguous() - - if past_key.shape[-2] != self.config.sliding_window - 1: - raise ValueError( - f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" - f" {past_key.shape}" - ) - - if attention_mask is not None: - attention_mask = attention_mask[:, slicing_tokens:] - attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) - - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - dropout_rate = 0.0 if not self.training else self.attention_dropout - - # In PEFT, usually we cast the layer norms in float32 for training stability reasons - # therefore the input hidden states gets silently casted in float32. Hence, we need - # cast them back in float16 just to be sure everything works as expected. - input_dtype = query_states.dtype - if input_dtype == torch.float32: - if torch.is_autocast_enabled(): - target_dtype = torch.get_autocast_gpu_dtype() - # Handle the case where the model is quantized - elif hasattr(self.config, "_pre_quantization_dtype"): - target_dtype = self.config._pre_quantization_dtype - else: - target_dtype = self.q_proj.weight.dtype - - logger.warning_once( - f"The input hidden states seems to be silently casted in float32, this might be related to" - f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" - f" {target_dtype}." - ) - - query_states = query_states.to(target_dtype) - key_states = key_states.to(target_dtype) - value_states = value_states.to(target_dtype) - - # Reashape to the expected shape for Flash Attention - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - attn_output = self._flash_attention_forward( - query_states, - key_states, - value_states, - attention_mask, - q_len, - dropout=dropout_rate, - use_sliding_windows=use_sliding_windows, - ) - - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - def _flash_attention_forward( - self, - query_states, - key_states, - value_states, - attention_mask, - query_length, - dropout=0.0, - softmax_scale=None, - use_sliding_windows=False, - ): - """ - Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token - first unpad the input, then computes the attention scores and pad the final attention scores. - - Args: - query_states (`torch.Tensor`): - Input query states to be passed to Flash Attention API - key_states (`torch.Tensor`): - Input key states to be passed to Flash Attention API - value_states (`torch.Tensor`): - Input value states to be passed to Flash Attention API - attention_mask (`torch.Tensor`): - The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the - position of padding tokens and 1 for the position of non-padding tokens. - dropout (`float`): - Attention dropout - softmax_scale (`float`, *optional*): - The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) - use_sliding_windows (`bool`, *optional*): - Whether to activate sliding window attention. - """ - if not self._flash_attn_uses_top_left_mask: - causal = self.is_causal - else: - # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. - causal = self.is_causal and query_length != 1 - - # Decide whether to use SWA or not by layer index. - if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: - use_sliding_windows = False - - # Contains at least one padding token in the sequence - if attention_mask is not None: - batch_size = query_states.shape[0] - query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( - query_states, key_states, value_states, attention_mask, query_length - ) - - cu_seqlens_q, cu_seqlens_k = cu_seq_lens - max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens - - if not use_sliding_windows: - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - else: - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - window_size=(self.config.sliding_window, self.config.sliding_window), - ) - - attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) - else: - if not use_sliding_windows: - attn_output = flash_attn_func( - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - else: - attn_output = flash_attn_func( - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal, - window_size=(self.config.sliding_window, self.config.sliding_window), - ) - - return attn_output - - # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input - def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): - batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape - - # On the first iteration we need to properly re-create the padding mask - # by slicing it on the proper place - if kv_seq_len != attention_mask.shape[-1]: - attention_mask_num_tokens = attention_mask.shape[-1] - attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] - - indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) - - key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) - value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) - - if query_length == kv_seq_len: - query_layer = index_first_axis( - query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k - ) - cu_seqlens_q = cu_seqlens_k - max_seqlen_in_batch_q = max_seqlen_in_batch_k - indices_q = indices_k - elif query_length == 1: - max_seqlen_in_batch_q = 1 - cu_seqlens_q = torch.arange( - batch_size + 1, dtype=torch.int32, device=query_layer.device - ) # There is a memcpy here, that is very bad. - indices_q = cu_seqlens_q[:-1] - query_layer = query_layer.squeeze(1) - else: - # The -q_len: slice assumes left padding. - attention_mask = attention_mask[:, -query_length:] - query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) - - return ( - query_layer, - key_layer, - value_layer, - indices_q, - (cu_seqlens_q, cu_seqlens_k), - (max_seqlen_in_batch_q, max_seqlen_in_batch_k), - ) - - -# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2 -class Qwen2SdpaAttention(Qwen2Attention): - """ - Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from - `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to - SDPA API. - """ - - # Adapted from Qwen2Attention.forward - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - if output_attentions: - # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. - logger.warning_once( - "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " - 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' - ) - return super().forward( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - - # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, - # Reference: https://github.com/pytorch/pytorch/issues/112577. - if query_states.device.type == "cuda" and attention_mask is not None: - query_states = query_states.contiguous() - key_states = key_states.contiguous() - value_states = value_states.contiguous() - - attn_output = torch.nn.functional.scaled_dot_product_attention( - query_states, - key_states, - value_states, - attn_mask=attention_mask, - dropout_p=self.attention_dropout if self.training else 0.0, - # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. - is_causal=self.is_causal and attention_mask is None and q_len > 1, - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.view(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - return attn_output, None, past_key_value - - -QWEN2_ATTENTION_CLASSES = { - "eager": Qwen2Attention, - "flash_attention_2": Qwen2FlashAttention2, - "sdpa": Qwen2SdpaAttention, -} - - -class Qwen2DecoderLayer(nn.Module): - def __init__(self, config: Qwen2Config, layer_idx: int): - super().__init__() - self.hidden_size = config.hidden_size - - if config.use_sliding_window and config._attn_implementation != "flash_attention_2": - logger.warning_once( - f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " - "unexpected results may be encountered." - ) - self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) - - self.mlp = Qwen2MLP(config) - self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - **kwargs, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. " - "Please make sure use `attention_mask` instead.`" - ) - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, sequence_length)` where padding elements are indicated by 0. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if use_cache: - outputs += (present_key_value,) - - return outputs - - -QWEN2_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`Qwen2Config`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", - QWEN2_START_DOCSTRING, -) -class Qwen2PreTrainedModel(PreTrainedModel): - config_class = Qwen2Config - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["Qwen2DecoderLayer"] - _skip_keys_device_placement = "past_key_values" - _supports_flash_attn_2 = True - _supports_sdpa = True - _supports_cache_class = True - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - -QWEN2_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): - Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` - returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. - - Two formats are allowed: - - a [`~cache_utils.Cache`] instance; - - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy - cache format. - - The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the - legacy cache format will be returned. - - If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't - have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` - of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", - QWEN2_START_DOCSTRING, -) -class Qwen2Model(Qwen2PreTrainedModel): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] - - Args: - config: Qwen2Config - """ - - def __init__(self, config: Qwen2Config): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) - self.layers = nn.ModuleList( - [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] - ) - self._attn_implementation = config._attn_implementation - self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - past_key_values_length = 0 - - if use_cache: - use_legacy_cache = not isinstance(past_key_values, Cache) - if use_legacy_cache: - past_key_values = DynamicCache.from_legacy_cache(past_key_values) - past_key_values_length = past_key_values.get_usable_length(seq_length) - - if position_ids is None: - device = input_ids.device if input_ids is not None else inputs_embeds.device - position_ids = torch.arange( - past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device - ) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - - if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: - is_padding_right = attention_mask[:, -1].sum().item() != batch_size - if is_padding_right: - raise ValueError( - "You are attempting to perform batched generation with padding_side='right'" - " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to " - " call `tokenizer.padding_side = 'left'` before tokenizing the input. " - ) - - if self._attn_implementation == "flash_attention_2": - # 2d mask is passed through the layers - attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None - elif self._attn_implementation == "sdpa" and not output_attentions: - # output_attentions=True can not be supported when using SDPA, and we fall back on - # the manual implementation that requires a 4D causal mask in all cases. - attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( - attention_mask, - (batch_size, seq_length), - inputs_embeds, - past_key_values_length, - ) - else: - # 4d mask is passed through the layers - attention_mask = _prepare_4d_causal_attention_mask( - attention_mask, - (batch_size, seq_length), - inputs_embeds, - past_key_values_length, - sliding_window=self.config.sliding_window, - ) - - hidden_states = inputs_embeds - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = None - - for decoder_layer in self.layers: - if output_hidden_states: - all_hidden_states += (hidden_states,) - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - attention_mask, - position_ids, - past_key_values, - output_attentions, - use_cache, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache = layer_outputs[2 if output_attentions else 1] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = None - if use_cache: - next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache - - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class Qwen2ForCausalLM(Qwen2PreTrainedModel): - _tied_weights_keys = ["lm_head.weight"] - - def __init__(self, config): - super().__init__(config) - self.model = Qwen2Model(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model - - @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, Qwen2ForCausalLM - - >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) - >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - logits = self.lm_head(hidden_states) - logits = logits.float() - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits,) + outputs[1:] - return (loss,) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation( - self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs - ): - # Omit tokens covered by past_key_values - if past_key_values is not None: - if isinstance(past_key_values, Cache): - cache_length = past_key_values.get_seq_length() - past_length = past_key_values.seen_tokens - max_cache_length = past_key_values.get_max_length() - else: - cache_length = past_length = past_key_values[0][0].shape[2] - max_cache_length = None - - # Keep only the unprocessed tokens: - # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where - # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as - # input) - if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: - input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] - # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard - # input_ids based on the past_length. - elif past_length < input_ids.shape[1]: - input_ids = input_ids[:, past_length:] - # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. - else: - remove_prefix_length = input_ids.shape[1] - 1 - input_ids = input_ids[:, remove_prefix_length:] - # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. - if ( - max_cache_length is not None - and attention_mask is not None - and cache_length + input_ids.shape[1] > max_cache_length - ): - attention_mask = attention_mask[:, -max_cache_length:] - - position_ids = kwargs.get("position_ids", None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -input_ids.shape[1] :] - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "position_ids": position_ids, - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - reordered_past += ( - tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), - ) - return reordered_past - - -@add_start_docstrings( - """ - The Qwen2 Model transformer with a sequence classification head on top (linear layer). - - [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - QWEN2_START_DOCSTRING, -) -class Qwen2ForSequenceClassification(Qwen2PreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = Qwen2Model(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility - sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 - sequence_lengths = sequence_lengths % input_ids.shape[-1] - sequence_lengths = sequence_lengths.to(logits.device) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - -from configuration_llava_qwen2 import LlavaQwen2Config - - -class LlavaQwen2Model(LlavaMetaModel, Qwen2Model): - config_class = LlavaQwen2Config - - def __init__(self, config: Qwen2Config): - super(LlavaQwen2Model, self).__init__(config) - - -class LlavaQwen2ForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): - config_class = LlavaQwen2Config - - def __init__(self, config): - super(Qwen2ForCausalLM, self).__init__(config) - self.model = LlavaQwen2Model(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_model(self): - return self.model - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - images: Optional[torch.FloatTensor] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - - if inputs_embeds is None: - ( - input_ids, - position_ids, - attention_mask, - past_key_values, - inputs_embeds, - labels - ) = self.prepare_inputs_labels_for_multimodal( - input_ids, - position_ids, - attention_mask, - past_key_values, - labels, - images - ) - - return super().forward( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - labels=labels, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict - ) - - def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, attention_mask=None, - **kwargs): - images = kwargs.pop("images", None) - - _inputs = super().prepare_inputs_for_generation( - input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, - **kwargs - ) - - if images is not None: - _inputs['images'] = images - return _inputs - - def expand2square(self, pil_img, background_color): - width, height = pil_img.size - if width == height: - return pil_img - elif width > height: - result = Image.new(pil_img.mode, (width, width), background_color) - result.paste(pil_img, (0, (width - height) // 2)) - return result - else: - result = Image.new(pil_img.mode, (height, height), background_color) - result.paste(pil_img, ((height - width) // 2, 0)) - return result - - def process_images(self, images, model_cfg): - vision_tower = self.get_vision_tower() - if not vision_tower.is_loaded: - vision_tower.load_model() - image_processor = vision_tower.image_processor - image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) - new_images = [] - if image_aspect_ratio == 'pad': - for image in images: - image = self.expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean)) - image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] - new_images.append(image) - else: - return image_processor(images, return_tensors='pt')['pixel_values'] - if all(x.shape == new_images[0].shape for x in new_images): - new_images = torch.stack(new_images, dim=0) - return new_images - - -AutoConfig.register("llava-qwen2", LlavaQwen2Config) -AutoModelForCausalLM.register(LlavaQwen2Config, LlavaQwen2ForCausalLM) \ No newline at end of file