Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
from threading import Thread
|
5 |
import re
|
6 |
import time
|
@@ -22,6 +22,40 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
22 |
device_map='auto',
|
23 |
trust_remote_code=True)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
@spaces.GPU
|
27 |
def bot_streaming(message, history):
|
@@ -60,10 +94,13 @@ def bot_streaming(message, history):
|
|
60 |
add_generation_prompt=True)
|
61 |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
62 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
66 |
-
generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100)
|
67 |
generated_text = ""
|
68 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
69 |
thread.start()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
|
4 |
from threading import Thread
|
5 |
import re
|
6 |
import time
|
|
|
22 |
device_map='auto',
|
23 |
trust_remote_code=True)
|
24 |
|
25 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
26 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
27 |
+
self.keywords = keywords
|
28 |
+
self.keyword_ids = []
|
29 |
+
self.max_keyword_len = 0
|
30 |
+
for keyword in keywords:
|
31 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
32 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
33 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
34 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
35 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
36 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
37 |
+
self.tokenizer = tokenizer
|
38 |
+
self.start_len = input_ids.shape[1]
|
39 |
+
|
40 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
41 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
42 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
43 |
+
for keyword_id in self.keyword_ids:
|
44 |
+
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
45 |
+
if torch.equal(truncated_output_ids, keyword_id):
|
46 |
+
return True
|
47 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
48 |
+
for keyword in self.keywords:
|
49 |
+
if keyword in outputs:
|
50 |
+
return True
|
51 |
+
return False
|
52 |
+
|
53 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
54 |
+
outputs = []
|
55 |
+
for i in range(output_ids.shape[0]):
|
56 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
57 |
+
return all(outputs)
|
58 |
+
|
59 |
|
60 |
@spaces.GPU
|
61 |
def bot_streaming(message, history):
|
|
|
94 |
add_generation_prompt=True)
|
95 |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
96 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
97 |
+
stop_str = '<|im_end|>'
|
98 |
+
keywords = [stop_str]
|
99 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
100 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
101 |
|
102 |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
103 |
+
generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100, stopping_criteria=[stopping_criteria])
|
104 |
generated_text = ""
|
105 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
106 |
thread.start()
|