Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,579 Bytes
0ea2c0e 35a9ed4 0ea2c0e 35a9ed4 0ea2c0e 8d20c43 0ea2c0e b29876f 0ea2c0e 8d20c43 0ea2c0e 8d20c43 94865fa faa07dc 0ea2c0e 6492ca5 6a42240 6492ca5 0ea2c0e 94865fa dcd69bb 0ea2c0e bdee200 94865fa 19540cf 6a42240 94865fa 15ef9ad 6492ca5 ae3770a f39c2d9 6492ca5 15ef9ad dd3ff5b 15ef9ad 4b7e1a2 926df70 6492ca5 8c2e68c 6492ca5 65f1afc 6492ca5 36e8111 6492ca5 926df70 6492ca5 36e8111 0ea2c0e 36e8111 0ea2c0e 36e8111 0ea2c0e acaae82 7c66d36 6492ca5 6a42240 6492ca5 6a42240 36e8111 6492ca5 35a9ed4 6492ca5 36e8111 50516b5 74fb1d6 36e8111 50516b5 0ea2c0e 6492ca5 50516b5 6492ca5 50516b5 6492ca5 0ea2c0e b499fae b918a29 0ea2c0e fe11ab2 9d1c4d3 638569b 9d1c4d3 eb51673 acaae82 eb51673 9524250 eb51673 abb7ff3 fe11ab2 f8400df 910f615 f8400df 0ea2c0e fe11ab2 9f98e4a bf10c96 9f98e4a bf10c96 9f98e4a bf10c96 9f98e4a c0db4f3 f8db3ba 4b7e1a2 92f4618 d85ac0d 9524250 0a94fbf d85ac0d 9875a55 270c57d f563c07 d3c2d92 f8db3ba c0db4f3 f8db3ba a3dc28c 5d704b8 b7839ab a75702e a3dc28c a75702e 5d704b8 f8db3ba f563c07 f8db3ba 69cfd18 951e616 9875a55 9edceb9 4c3c1bf c0db4f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
import os
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
torch.set_default_device('cuda')
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def correct_image_orientation(image_path):
# Mở ảnh
image = Image.open(image_path)
# Kiểm tra dữ liệu Exif (nếu có)
try:
exif = image._getexif()
if exif is not None:
for tag, value in exif.items():
if ExifTags.TAGS.get(tag) == "Orientation":
# Sửa hướng dựa trên Orientation
if value == 3:
image = image.rotate(180, expand=True)
elif value == 6:
image = image.rotate(-90, expand=True)
elif value == 8:
image = image.rotate(90, expand=True)
break
except Exception as e:
print("Không thể xử lý Exif:", e)
return image
def load_image(image_file, input_size=448, max_num=12):
image = correct_image_orientation(image_file).convert('RGB')
width, height = image.size
image = image.resize((width * 2, height * 2), Image.LANCZOS)
print("Image size: ", image.size)
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def extract_conclusion(text):
match = re.search(r"<CONCLUSION>(.*?)</CONCLUSION>", text, re.DOTALL)
return match.group(1).strip() if match else ""
def extract_think(text):
text = re.sub(r"<.*?>", "", text.split("<CONCLUSION>")[0]) # Loại bỏ tất cả các tag <...>
conclusion_part = extract_conclusion(text)
return text.replace(conclusion_part, "").strip()
def wrap_text(text, max_words=20):
lines = text.split('\n') # Cắt theo dòng trước
wrapped_lines = []
for line in lines:
words = line.split()
if len(words) > max_words:
wrapped_lines.extend([' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)])
else:
wrapped_lines.append(line)
return '\n'.join(wrapped_lines)
model = AutoModel.from_pretrained(
"5CD-AI/Vintern-3B-R-beta",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_flash_attn=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-3B-R-beta", trust_remote_code=True, use_fast=False)
global_think_mode =False
think_prompt = """Bạn là người rất cẩn thận và đa nghi, vui lòng trả lời câu hỏi dưới đây bằng tiếng Việt. Khi suy luận bạn thường liệt kê ra các bằng chứng để chỉ ra các đáp án khả thi, suy luận và giải thích tại sao lại lựa chọn và loại bỏ trước khi đưa ra câu trả lời cuối cùng.
Câu hỏi:
{question_input}
Hãy trả lời rất dài theo định dạng sau:
<SUMMARY>...</SUMMARY>
<CAPTION>...</CAPTION>
<INFORMATION_EXTRACT>...</INFORMATION_EXTRACT>
<EXTERNAL_KNOWLEDGE_EXPANSION>...</EXTERNAL_KNOWLEDGE_EXPANSION>
<FIND_CANDIDATES_REASONING>...</FIND_CANDIDATES_REASONING>
<TOP3_CANDIDATES>...</TOP3_CANDIDATES>
<REASONING_PLAN>...</REASONING_PLAN>
<REASONING>...</REASONING>
<COUNTER_ARGUMENTS>...</COUNTER_ARGUMENTS>
<VALIDATION_REASONING>...</VALIDATION_REASONING>
<CONCLUSION>...</CONCLUSION>
"""
@spaces.GPU(duration=120)
def chat(message, history):
global global_think_mode
print("------------------------> RUN with global_think_mode: ",global_think_mode)
print("history",history)
print("message",message)
if len(history) != 0 and len(message["files"]) != 0:
return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện.
We currently only support one image at the start of the context! Please start a new conversation."""
if len(history) == 0 and len(message["files"]) != 0:
if "path" in message["files"][0]:
test_image = message["files"][0]["path"]
else:
test_image = message["files"][0]
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
elif len(history) == 0 and len(message["files"]) == 0:
pixel_values = None
elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
test_image = history[0][0][0]
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
else:
pixel_values = None
if not global_think_mode:
generation_config = dict(max_new_tokens= 700, do_sample=False, num_beams = 3, repetition_penalty=2.5)
if len(history) == 0:
if pixel_values is not None:
question = '<image>\n'+message["text"]
else:
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
else:
conv_history = []
if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
start_index = 1
else:
start_index = 0
for i, chat_pair in enumerate(history[start_index:]):
if i == 0 and start_index == 1:
conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
else:
conv_history.append(tuple(chat_pair))
print("conv_history",conv_history)
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# return response
buffer = ""
for new_text in response:
buffer += new_text
generated_text_without_prompt = buffer[:]
time.sleep(0.02)
yield generated_text_without_prompt
else:
####################################################### thinking #######################################################
generation_config = dict(max_new_tokens= 2000, do_sample=True, num_beams = 2, repetition_penalty=2.5, temperature=0.5)
if len(history) == 0:
if pixel_values is not None:
question = '<image>\n'+ think_prompt.format(question_input=message["text"])
else:
question = think_prompt.format(question_input=message["text"])
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
else:
conv_history = []
if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
start_index = 1
else:
start_index = 0
for i, chat_pair in enumerate(history[start_index:]):
if i == 0 and start_index == 1:
conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
else:
conv_history.append(tuple(chat_pair))
print("conv_history",conv_history)
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
think_part = wrap_text(extract_think(response))
conclusion_part = extract_conclusion(response)
if conclusion_part == "":
conclusion_part = think_part
buffer = ""
thinking = think_part
accumulated_text = "💡 **Thinking process:**\n\n"
accumulated_text += "<pre><code>\n"
temp_text = ""
for char in thinking:
temp_text += char
yield accumulated_text + temp_text + "\n</code></pre>\n"
time.sleep(0.01)
accumulated_text += temp_text + "\n</code></pre>\n"
# Yield phần kết luận
accumulated_text += "🎯 **Conclusion:**\n\n"
temp_text = ""
for char in conclusion_part:
temp_text += char
yield accumulated_text + temp_text
time.sleep(0.02)
accumulated_text += temp_text
CSS ="""
#component-10 {
height: 70dvh !important;
transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
border-style: solid;
overflow: hidden;
flex-grow: 1;
min-width: min(160px, 100%);
border-width: var(--block-border-width);
}
#component-12 {
height: 50dvh !important;
border-style: solid;
overflow: auto;
flex-grow: 1;
min-width: min(160px, 100%);
border-width: var(--block-border-width);
}
#component-15 {
border-style: solid;
overflow: hidden;
flex-grow: 7;
min-width: min(160px, 100%);
border-width: var(--block-border-width);
height: 20dvh !important;
}
#think-button{
width: 40% !important;
}
/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
width: 100%;
object-fit: contain;
height: 100%;
border-radius: 13px; /* Thêm bo góc cho ảnh */
max-width: 50vw; /* Giới hạn chiều rộng ảnh */
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
user-select: text;
text-align: left;
height: 300px;
}
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
border-radius: 13px;
max-width: 50vw;
}
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
margin: var(--size-2);
max-height: 500px;
}
.image-preview-close-button {
position: relative; /* Nếu cần định vị trí */
width: 5%; /* Chiều rộng nút */
height: 5%; /* Chiều cao nút */
display: flex;
justify-content: center;
align-items: center;
padding: 0; /* Để tránh ảnh hưởng từ padding mặc định */
border: none; /* Tùy chọn để loại bỏ đường viền */
background: none; /* Tùy chọn để loại bỏ nền */
}
.example-image-container.svelte-9pi8y1 {
width: calc(var(--size-8) * 5);
height: calc(var(--size-8) * 5);
border-radius: var(--radius-lg);
overflow: hidden;
position: relative;
margin-bottom: var(--spacing-lg);
}
"""
js = """
function forceLightTheme() {
const url = new URL(window.location);
// Cập nhật __theme thành light nếu giá trị không đúng
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
// Thay đổi URL mà không tải lại trang nếu cần
window.history.replaceState({}, '', url.href);
}
// Đảm bảo document luôn áp dụng theme light
document.documentElement.setAttribute('data-theme', 'light');
}
"""
def toggle_think_mode(current_state):
global global_think_mode
new_state = not current_state
global_think_mode = not global_think_mode
print("global_think_mode: ",global_think_mode,"="*20)
button_label = "🧠DeepThink💡1minute⏳" if global_think_mode else "🧠Think"
return new_state, button_label
def reset_think_mode():
return False, "🧠Think" # Trả về trạng thái mặc định
demo = gr.Blocks(css=CSS,js=js, theme='NoCrypt/miku')
# demo = gr.Blocks( theme='NoCrypt/miku')
with demo:
think_mode = gr.State(False) # Lưu trạng thái Think Mode
chat_demo_interface = gr.ChatInterface(
fn=chat,
description="""**Vintern-3B-R-beta** This Gradio demo is not complete yet; I am still working on it. :) """,
examples=[
[{"text": "Trích xuất các thông tin từ ảnh trả về markdown.", "files":["./demo_1.jpg"]}, False,False],
[{"text": "Liệt kê toàn bộ văn bản.", "files":["./demo_2.jpg"]}, False,False],
[{"text": "Trích xuất thông tin kiện hàng trong ảnh và trả về dạng JSON.", "files":["./demo_4.jpg"]}, False,False]
],
# additional_inputs=[think_mode],
title="❄️Vintern-3B-R-beta❄️",
multimodal=True,
css=CSS,
js=js,
theme='NoCrypt/miku'
)
think_button = gr.Button("🧠Think", elem_id="think-button", variant="secondary")
# Khi nhấn nút, trạng thái think_mode thay đổi + đổi nhãn nút
think_button.click(toggle_think_mode, inputs=[think_mode], outputs=[think_mode, think_button])
# Reset nút Think sau khi chat hoàn tất
# chat_demo_interface.submit(reset_think_mode, inputs=[], outputs=[think_mode, think_button])
demo.queue().launch() |