File size: 16,579 Bytes
0ea2c0e
35a9ed4
0ea2c0e
35a9ed4
0ea2c0e
 
 
 
 
 
 
 
8d20c43
0ea2c0e
 
 
 
 
 
b29876f
0ea2c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d20c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea2c0e
8d20c43
94865fa
 
faa07dc
0ea2c0e
 
 
 
 
 
6492ca5
 
 
 
 
 
 
 
6a42240
 
 
 
 
 
 
 
 
 
 
 
 
6492ca5
0ea2c0e
94865fa
dcd69bb
0ea2c0e
bdee200
94865fa
19540cf
6a42240
94865fa
15ef9ad
 
6492ca5
 
 
 
 
 
 
 
 
 
ae3770a
 
f39c2d9
 
6492ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15ef9ad
dd3ff5b
15ef9ad
4b7e1a2
926df70
6492ca5
 
 
 
 
 
8c2e68c
6492ca5
 
 
65f1afc
6492ca5
 
 
 
 
 
 
 
 
36e8111
6492ca5
926df70
6492ca5
36e8111
 
 
 
 
 
0ea2c0e
36e8111
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea2c0e
36e8111
 
 
 
 
 
 
 
 
 
 
0ea2c0e
acaae82
7c66d36
6492ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a42240
6492ca5
6a42240
 
 
36e8111
6492ca5
35a9ed4
6492ca5
36e8111
 
 
 
 
50516b5
74fb1d6
36e8111
50516b5
0ea2c0e
6492ca5
 
 
 
 
 
50516b5
 
6492ca5
50516b5
6492ca5
0ea2c0e
 
b499fae
b918a29
0ea2c0e
 
 
 
 
 
 
fe11ab2
9d1c4d3
638569b
9d1c4d3
 
 
 
 
 
 
eb51673
 
 
 
acaae82
eb51673
9524250
eb51673
 
abb7ff3
 
 
 
fe11ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8400df
910f615
f8400df
 
 
 
 
 
 
0ea2c0e
fe11ab2
9f98e4a
 
bf10c96
 
9f98e4a
bf10c96
 
9f98e4a
 
bf10c96
9f98e4a
 
 
 
 
c0db4f3
f8db3ba
4b7e1a2
92f4618
d85ac0d
9524250
0a94fbf
d85ac0d
9875a55
 
 
270c57d
f563c07
 
d3c2d92
f8db3ba
c0db4f3
f8db3ba
a3dc28c
5d704b8
 
b7839ab
a75702e
a3dc28c
 
 
a75702e
 
5d704b8
 
 
 
 
 
f8db3ba
f563c07
f8db3ba
69cfd18
951e616
9875a55
9edceb9
4c3c1bf
c0db4f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
import os

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.set_default_device('cuda')


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def correct_image_orientation(image_path):
    # Mở ảnh
    image = Image.open(image_path)

    # Kiểm tra dữ liệu Exif (nếu có)
    try:
        exif = image._getexif()
        if exif is not None:
            for tag, value in exif.items():
                if ExifTags.TAGS.get(tag) == "Orientation":
                    # Sửa hướng dựa trên Orientation
                    if value == 3:
                        image = image.rotate(180, expand=True)
                    elif value == 6:
                        image = image.rotate(-90, expand=True)
                    elif value == 8:
                        image = image.rotate(90, expand=True)
                    break
    except Exception as e:
        print("Không thể xử lý Exif:", e)

    return image
    
def load_image(image_file, input_size=448, max_num=12):
    image = correct_image_orientation(image_file).convert('RGB')
    width, height = image.size
    image = image.resize((width * 2, height * 2), Image.LANCZOS)
    print("Image size: ", image.size)
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def extract_conclusion(text):
    match = re.search(r"<CONCLUSION>(.*?)</CONCLUSION>", text, re.DOTALL)
    return match.group(1).strip() if match else ""

def extract_think(text):
    text = re.sub(r"<.*?>", "", text.split("<CONCLUSION>")[0])  # Loại bỏ tất cả các tag <...>
    conclusion_part = extract_conclusion(text)
    return text.replace(conclusion_part, "").strip()

def wrap_text(text, max_words=20):
    lines = text.split('\n')  # Cắt theo dòng trước
    wrapped_lines = []
    
    for line in lines:
        words = line.split()
        if len(words) > max_words:
            wrapped_lines.extend([' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)])
        else:
            wrapped_lines.append(line)
    
    return '\n'.join(wrapped_lines)
    
model = AutoModel.from_pretrained(
    "5CD-AI/Vintern-3B-R-beta",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    use_flash_attn=True,
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-3B-R-beta", trust_remote_code=True, use_fast=False)

global_think_mode =False
think_prompt = """Bạn là người rất cẩn thận và đa nghi, vui lòng trả lời câu hỏi dưới đây bằng tiếng Việt. Khi suy luận bạn thường liệt kê ra các bằng chứng để chỉ ra các đáp án khả thi, suy luận và giải thích tại sao lại lựa chọn và loại bỏ trước khi đưa ra câu trả lời cuối cùng.

Câu hỏi:
{question_input}

Hãy trả lời rất dài theo định dạng sau:
<SUMMARY>...</SUMMARY>

<CAPTION>...</CAPTION>

<INFORMATION_EXTRACT>...</INFORMATION_EXTRACT>

<EXTERNAL_KNOWLEDGE_EXPANSION>...</EXTERNAL_KNOWLEDGE_EXPANSION>

<FIND_CANDIDATES_REASONING>...</FIND_CANDIDATES_REASONING>

<TOP3_CANDIDATES>...</TOP3_CANDIDATES>

<REASONING_PLAN>...</REASONING_PLAN>

<REASONING>...</REASONING>

<COUNTER_ARGUMENTS>...</COUNTER_ARGUMENTS>

<VALIDATION_REASONING>...</VALIDATION_REASONING>

<CONCLUSION>...</CONCLUSION>
"""


@spaces.GPU(duration=120)
def chat(message, history):
    global global_think_mode
    print("------------------------> RUN with global_think_mode: ",global_think_mode)
    print("history",history)
    print("message",message)

    if len(history) != 0 and len(message["files"]) != 0:
        return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện.
We currently only support one image at the start of the context! Please start a new conversation."""
    
    if len(history) == 0 and len(message["files"]) != 0:
        if "path" in message["files"][0]:
            test_image = message["files"][0]["path"]
        else:
            test_image = message["files"][0]
        pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
    elif len(history) == 0 and len(message["files"]) == 0:
        pixel_values = None     
    elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
        test_image = history[0][0][0]
        pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
    else:
        pixel_values = None 
            
    if not global_think_mode:
        generation_config = dict(max_new_tokens= 700, do_sample=False, num_beams = 3, repetition_penalty=2.5)
    
        if len(history) == 0:
            if pixel_values is not None:
                question = '<image>\n'+message["text"]
            else:
                question = message["text"]
            response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
        else:
            conv_history = []
            if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
                start_index = 1
            else:
                start_index = 0
            
            for i, chat_pair in enumerate(history[start_index:]):
                if i == 0 and start_index == 1:
                     conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
                else:
                    conv_history.append(tuple(chat_pair))
    
                
            print("conv_history",conv_history)
            question = message["text"]
            response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
            
        print(f'User: {question}\nAssistant: {response}')
    
        # return response
        buffer = ""
        for new_text in response:
          buffer += new_text
          generated_text_without_prompt = buffer[:]
          time.sleep(0.02)
          yield generated_text_without_prompt
    else:
        ####################################################### thinking #######################################################
        generation_config = dict(max_new_tokens= 2000, do_sample=True, num_beams = 2, repetition_penalty=2.5, temperature=0.5)
    
        if len(history) == 0:
            if pixel_values is not None:
                question = '<image>\n'+ think_prompt.format(question_input=message["text"])
            else:
                question = think_prompt.format(question_input=message["text"])
            response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
        else:
            conv_history = []
            if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
                start_index = 1
            else:
                start_index = 0
            
            for i, chat_pair in enumerate(history[start_index:]):
                if i == 0 and start_index == 1:
                     conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
                else:
                    conv_history.append(tuple(chat_pair))
    
                
            print("conv_history",conv_history)
            question = message["text"]
            response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
            
        print(f'User: {question}\nAssistant: {response}')
        think_part = wrap_text(extract_think(response))
        conclusion_part = extract_conclusion(response)
        if conclusion_part == "":
            conclusion_part = think_part
            
        buffer = ""
        thinking = think_part

        accumulated_text = "💡 **Thinking process:**\n\n"
        accumulated_text += "<pre><code>\n"

        temp_text = ""
        for char in thinking:
            temp_text += char
            yield accumulated_text + temp_text + "\n</code></pre>\n"
            time.sleep(0.01)

        accumulated_text += temp_text + "\n</code></pre>\n"

        # Yield phần kết luận
        accumulated_text += "🎯 **Conclusion:**\n\n"
        
        temp_text = ""
        for char in conclusion_part:
            temp_text += char
            yield accumulated_text + temp_text 
            time.sleep(0.02)
        
        accumulated_text += temp_text 


CSS ="""
#component-10 {
  height: 70dvh !important;
  transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
  border-style: solid;
  overflow: hidden;
  flex-grow: 1;
  min-width: min(160px, 100%);
  border-width: var(--block-border-width);
}

#component-12 {
    height: 50dvh !important;
    border-style: solid;
    overflow: auto;
    flex-grow: 1;
    min-width: min(160px, 100%);
    border-width: var(--block-border-width);
}

#component-15 {
    border-style: solid;
    overflow: hidden;
    flex-grow: 7;
    min-width: min(160px, 100%); 
    border-width: var(--block-border-width);
    height: 20dvh !important;
}

#think-button{
    width: 40% !important;
}

/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
  width: 100%;
  object-fit: contain;
  height: 100%;
  border-radius: 13px; /* Thêm bo góc cho ảnh */
  max-width: 50vw;     /* Giới hạn chiều rộng ảnh */
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
  user-select: text;
  text-align: left;
  height: 300px;
}
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
  border-radius: 13px;
  max-width: 50vw;
}
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
    margin: var(--size-2);
    max-height: 500px;
}
.image-preview-close-button {
  position: relative; /* Nếu cần định vị trí */
  width: 5%; /* Chiều rộng nút */
  height: 5%; /* Chiều cao nút */
  display: flex;
  justify-content: center;
  align-items: center;
  padding: 0; /* Để tránh ảnh hưởng từ padding mặc định */
  border: none; /* Tùy chọn để loại bỏ đường viền */
  background: none; /* Tùy chọn để loại bỏ nền */
}

.example-image-container.svelte-9pi8y1 {
    width: calc(var(--size-8) * 5);
    height: calc(var(--size-8) * 5);
    border-radius: var(--radius-lg);
    overflow: hidden;
    position: relative;
    margin-bottom: var(--spacing-lg);
}
"""

js = """
function forceLightTheme() {
    const url = new URL(window.location);

    // Cập nhật __theme thành light nếu giá trị không đúng
    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        // Thay đổi URL mà không tải lại trang nếu cần
        window.history.replaceState({}, '', url.href);
    }

    // Đảm bảo document luôn áp dụng theme light
    document.documentElement.setAttribute('data-theme', 'light');
}
"""

def toggle_think_mode(current_state):
    global global_think_mode
    new_state = not current_state
    global_think_mode = not global_think_mode
    print("global_think_mode: ",global_think_mode,"="*20)
    button_label = "🧠DeepThink💡1minute⏳" if global_think_mode else "🧠Think"
    return new_state, button_label

def reset_think_mode():
    return False, "🧠Think"  # Trả về trạng thái mặc định
    
demo = gr.Blocks(css=CSS,js=js, theme='NoCrypt/miku')
# demo = gr.Blocks( theme='NoCrypt/miku')


with demo:
    think_mode = gr.State(False)  # Lưu trạng thái Think Mode
    
    chat_demo_interface = gr.ChatInterface(
        fn=chat,
        description="""**Vintern-3B-R-beta** This Gradio demo is not complete yet; I am still working on it. :) """,
        examples=[
            [{"text": "Trích xuất các thông tin từ ảnh trả về markdown.", "files":["./demo_1.jpg"]}, False,False],
            [{"text": "Liệt kê toàn bộ văn bản.", "files":["./demo_2.jpg"]}, False,False],
            [{"text": "Trích xuất thông tin kiện hàng trong ảnh và trả về dạng JSON.", "files":["./demo_4.jpg"]}, False,False]
        ],
        # additional_inputs=[think_mode],
        title="❄️Vintern-3B-R-beta❄️",
        multimodal=True,
        css=CSS,
        js=js,
        theme='NoCrypt/miku'
    )
    
    think_button = gr.Button("🧠Think", elem_id="think-button", variant="secondary") 
    
    # Khi nhấn nút, trạng thái think_mode thay đổi + đổi nhãn nút
    think_button.click(toggle_think_mode, inputs=[think_mode], outputs=[think_mode, think_button])
    # Reset nút Think sau khi chat hoàn tất
    # chat_demo_interface.submit(reset_think_mode, inputs=[], outputs=[think_mode, think_button])

demo.queue().launch()