File size: 16,190 Bytes
9a83644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f32cd36
 
 
 
 
 
9a83644
 
 
 
 
 
f32cd36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a83644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from munch import Munch
import json


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def convert_pad_shape(pad_shape):
    l = pad_shape[::-1]
    pad_shape = [item for sublist in l for item in sublist]
    return pad_shape


def intersperse(lst, item):
    result = [item] * (len(lst) * 2 + 1)
    result[1::2] = lst
    return result


def kl_divergence(m_p, logs_p, m_q, logs_q):
    """KL(P||Q)"""
    kl = (logs_q - logs_p) - 0.5
    kl += (
        0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
    )
    return kl


def rand_gumbel(shape):
    """Sample from the Gumbel distribution, protect from overflows."""
    uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
    return -torch.log(-torch.log(uniform_samples))


def rand_gumbel_like(x):
    g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
    return g


def slice_segments(x, ids_str, segment_size=4):
    ret = torch.zeros_like(x[:, :, :segment_size])
    for i in range(x.size(0)):
        idx_str = ids_str[i]
        idx_end = idx_str + segment_size
        ret[i] = x[i, :, idx_str:idx_end]
    return ret


def slice_segments_audio(x, ids_str, segment_size=4):
    ret = torch.zeros_like(x[:, :segment_size])
    for i in range(x.size(0)):
        idx_str = ids_str[i]
        idx_end = idx_str + segment_size
        ret[i] = x[i, idx_str:idx_end]
    return ret


def rand_slice_segments(x, x_lengths=None, segment_size=4):
    b, d, t = x.size()
    if x_lengths is None:
        x_lengths = t
    ids_str_max = x_lengths - segment_size + 1
    ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
        dtype=torch.long
    )
    ret = slice_segments(x, ids_str, segment_size)
    return ret, ids_str


def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
    position = torch.arange(length, dtype=torch.float)
    num_timescales = channels // 2
    log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
        num_timescales - 1
    )
    inv_timescales = min_timescale * torch.exp(
        torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
    )
    scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
    signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
    signal = F.pad(signal, [0, 0, 0, channels % 2])
    signal = signal.view(1, channels, length)
    return signal


def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
    b, channels, length = x.size()
    signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
    return x + signal.to(dtype=x.dtype, device=x.device)


def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
    b, channels, length = x.size()
    signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
    return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)


def subsequent_mask(length):
    mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
    return mask


@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
    n_channels_int = n_channels[0]
    in_act = input_a + input_b
    t_act = torch.tanh(in_act[:, :n_channels_int, :])
    s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
    acts = t_act * s_act
    return acts


def convert_pad_shape(pad_shape):
    l = pad_shape[::-1]
    pad_shape = [item for sublist in l for item in sublist]
    return pad_shape


def shift_1d(x):
    x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
    return x


def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = torch.arange(max_length, dtype=length.dtype, device=length.device)
    return x.unsqueeze(0) < length.unsqueeze(1)


def avg_with_mask(x, mask):
    assert mask.dtype == torch.float, "Mask should be float"

    if mask.ndim == 2:
        mask = mask.unsqueeze(1)

    if mask.shape[1] == 1:
        mask = mask.expand_as(x)

    return (x * mask).sum() / mask.sum()


def generate_path(duration, mask):
    """

    duration: [b, 1, t_x]

    mask: [b, 1, t_y, t_x]

    """
    device = duration.device

    b, _, t_y, t_x = mask.shape
    cum_duration = torch.cumsum(duration, -1)

    cum_duration_flat = cum_duration.view(b * t_x)
    path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
    path = path.view(b, t_x, t_y)
    path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
    path = path.unsqueeze(1).transpose(2, 3) * mask
    return path


def clip_grad_value_(parameters, clip_value, norm_type=2):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    norm_type = float(norm_type)
    if clip_value is not None:
        clip_value = float(clip_value)

    total_norm = 0
    for p in parameters:
        param_norm = p.grad.data.norm(norm_type)
        total_norm += param_norm.item() ** norm_type
        if clip_value is not None:
            p.grad.data.clamp_(min=-clip_value, max=clip_value)
    total_norm = total_norm ** (1.0 / norm_type)
    return total_norm


def log_norm(x, mean=-4, std=4, dim=2):
    """

    normalized log mel -> mel -> norm -> log(norm)

    """
    x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
    return x


def load_F0_models(path):
    # load F0 model
    from .JDC.model import JDCNet

    F0_model = JDCNet(num_class=1, seq_len=192)
    params = torch.load(path, map_location="cpu")["net"]
    F0_model.load_state_dict(params)
    _ = F0_model.train()

    return F0_model


def modify_w2v_forward(self, output_layer=15):
    """

    change forward method of w2v encoder to get its intermediate layer output

    :param self:

    :param layer:

    :return:

    """
    from transformers.modeling_outputs import BaseModelOutput

    def forward(

        hidden_states,

        attention_mask=None,

        output_attentions=False,

        output_hidden_states=False,

        return_dict=True,

    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        conv_attention_mask = attention_mask
        if attention_mask is not None:
            # make sure padded tokens output 0
            hidden_states = hidden_states.masked_fill(
                ~attention_mask.bool().unsqueeze(-1), 0.0
            )

            # extend attention_mask
            attention_mask = 1.0 - attention_mask[:, None, None, :].to(
                dtype=hidden_states.dtype
            )
            attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
            attention_mask = attention_mask.expand(
                attention_mask.shape[0],
                1,
                attention_mask.shape[-1],
                attention_mask.shape[-1],
            )

        hidden_states = self.dropout(hidden_states)

        if self.embed_positions is not None:
            relative_position_embeddings = self.embed_positions(hidden_states)
        else:
            relative_position_embeddings = None

        deepspeed_zero3_is_enabled = False

        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = torch.rand([])

            skip_the_layer = (
                True
                if self.training and (dropout_probability < self.config.layerdrop)
                else False
            )
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        layer.__call__,
                        hidden_states,
                        attention_mask,
                        relative_position_embeddings,
                        output_attentions,
                        conv_attention_mask,
                    )
                else:
                    layer_outputs = layer(
                        hidden_states,
                        attention_mask=attention_mask,
                        relative_position_embeddings=relative_position_embeddings,
                        output_attentions=output_attentions,
                        conv_attention_mask=conv_attention_mask,
                    )
                hidden_states = layer_outputs[0]

            if skip_the_layer:
                layer_outputs = (None, None)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

            if i == output_layer - 1:
                break

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, all_hidden_states, all_self_attentions]
                if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    return forward


MATPLOTLIB_FLAG = False


def plot_spectrogram_to_numpy(spectrogram):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib
        import logging

        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger("matplotlib")
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def normalize_f0(f0_sequence):
    # Remove unvoiced frames (replace with -1)
    voiced_indices = np.where(f0_sequence > 0)[0]
    f0_voiced = f0_sequence[voiced_indices]

    # Convert to log scale
    log_f0 = np.log2(f0_voiced)

    # Calculate mean and standard deviation
    mean_f0 = np.mean(log_f0)
    std_f0 = np.std(log_f0)

    # Normalize the F0 sequence
    normalized_f0 = (log_f0 - mean_f0) / std_f0

    # Create the normalized F0 sequence with unvoiced frames
    normalized_sequence = np.zeros_like(f0_sequence)
    normalized_sequence[voiced_indices] = normalized_f0
    normalized_sequence[f0_sequence <= 0] = -1  # Assign -1 to unvoiced frames

    return normalized_sequence


def build_model(args, stage="DiT"):
    if stage == "DiT":
        from modules.flow_matching import CFM
        from modules.length_regulator import InterpolateRegulator

        length_regulator = InterpolateRegulator(
            channels=args.length_regulator.channels,
            sampling_ratios=args.length_regulator.sampling_ratios,
            is_discrete=args.length_regulator.is_discrete,
            codebook_size=args.length_regulator.content_codebook_size,
            token_dropout_prob=args.length_regulator.token_dropout_prob if hasattr(args.length_regulator, "token_dropout_prob") else 0.0,
            token_dropout_range=args.length_regulator.token_dropout_range if hasattr(args.length_regulator, "token_dropout_range") else 0.0,
            n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
            quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
            f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
            n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
        )
        cfm = CFM(args)
        nets = Munch(
            cfm=cfm,
            length_regulator=length_regulator,
        )
    elif stage == 'codec':
        from dac.model.dac import Encoder
        from modules.quantize import (
            FAquantizer,
        )

        encoder = Encoder(
            d_model=args.DAC.encoder_dim,
            strides=args.DAC.encoder_rates,
            d_latent=1024,
            causal=args.causal,
            lstm=args.lstm,
        )

        quantizer = FAquantizer(
            in_dim=1024,
            n_p_codebooks=1,
            n_c_codebooks=args.n_c_codebooks,
            n_t_codebooks=2,
            n_r_codebooks=3,
            codebook_size=1024,
            codebook_dim=8,
            quantizer_dropout=0.5,
            causal=args.causal,
            separate_prosody_encoder=args.separate_prosody_encoder,
            timbre_norm=args.timbre_norm,
        )

        nets = Munch(
            encoder=encoder,
            quantizer=quantizer,
        )
    else:
        raise ValueError(f"Unknown stage: {stage}")

    return nets


def load_checkpoint(

    model,

    optimizer,

    path,

    load_only_params=True,

    ignore_modules=[],

    is_distributed=False,

):
    state = torch.load(path, map_location="cpu")
    params = state["net"]
    for key in model:
        if key in params and key not in ignore_modules:
            if not is_distributed:
                # strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
                for k in list(params[key].keys()):
                    if k.startswith("module."):
                        params[key][k[len("module.") :]] = params[key][k]
                        del params[key][k]
            model_state_dict = model[key].state_dict()
            # 过滤出形状匹配的键值对
            filtered_state_dict = {
                k: v
                for k, v in params[key].items()
                if k in model_state_dict and v.shape == model_state_dict[k].shape
            }
            skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
            if skipped_keys:
                print(
                    f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
                )
            print("%s loaded" % key)
            model[key].load_state_dict(filtered_state_dict, strict=False)
    _ = [model[key].eval() for key in model]

    if not load_only_params:
        epoch = state["epoch"] + 1
        iters = state["iters"]
        optimizer.load_state_dict(state["optimizer"])
        optimizer.load_scheduler_state_dict(state["scheduler"])

    else:
        epoch = 0
        iters = 0

    return model, optimizer, epoch, iters


def recursive_munch(d):
    if isinstance(d, dict):
        return Munch((k, recursive_munch(v)) for k, v in d.items())
    elif isinstance(d, list):
        return [recursive_munch(v) for v in d]
    else:
        return d