File size: 11,330 Bytes
9a83644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
from torch import nn
import math

from modules.gpt_fast.model import ModelArgs, Transformer
from modules.wavenet import WN
from modules.commons import sequence_mask

from torch.nn.utils import weight_norm

def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################

class TimestepEmbedder(nn.Module):
    """

    Embeds scalar timesteps into vector representations.

    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000, scale=1000):
        """

        Create sinusoidal timestep embeddings.

        :param t: a 1-D Tensor of N indices, one per batch element.

                          These may be fractional.

        :param dim: the dimension of the output.

        :param max_period: controls the minimum frequency of the embeddings.

        :return: an (N, D) Tensor of positional embeddings.

        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = scale * t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class StyleEmbedder(nn.Module):
    """

    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    """
    def __init__(self, input_size, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
        self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
        self.input_size = input_size
        self.dropout_prob = dropout_prob

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        else:
            labels = self.style_in(labels)
        embeddings = labels
        return embeddings

class FinalLayer(nn.Module):
    """

    The final layer of DiT.

    """
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x

class DiT(torch.nn.Module):
    def __init__(

        self,

        args

    ):
        super(DiT, self).__init__()
        self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
        self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
        self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
        model_args = ModelArgs(
            block_size=args.DiT.block_size,
            n_layer=args.DiT.depth,
            n_head=args.DiT.num_heads,
            dim=args.DiT.hidden_dim,
            head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
            vocab_size=1024,
            uvit_skip_connection=self.uvit_skip_connection,
        )
        self.transformer = Transformer(model_args)
        self.in_channels = args.DiT.in_channels
        self.out_channels = args.DiT.in_channels
        self.num_heads = args.DiT.num_heads

        self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))

        self.content_type = args.DiT.content_type  # 'discrete' or 'continuous'
        self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
        self.content_dim = args.DiT.content_dim # for continuous content
        self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim)  # discrete content
        self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content

        self.is_causal = args.DiT.is_causal

        self.n_f0_bins = args.DiT.n_f0_bins
        self.f0_bins = torch.arange(2, 1024, 1024 // args.DiT.n_f0_bins)
        self.f0_embedder = nn.Embedding(args.DiT.n_f0_bins, args.DiT.hidden_dim)
        self.f0_condition = args.DiT.f0_condition

        self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
        self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
        # self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
        # self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))

        input_pos = torch.arange(args.DiT.block_size)
        self.register_buffer("input_pos", input_pos)

        self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
        self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
        self.final_layer_type = args.DiT.final_layer_type  # mlp or wavenet
        if self.final_layer_type == 'wavenet':
            self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
                              kernel_size=args.wavenet.kernel_size,
                              dilation_rate=args.wavenet.dilation_rate,
                              n_layers=args.wavenet.num_layers,
                              gin_channels=args.wavenet.hidden_dim,
                              p_dropout=args.wavenet.p_dropout,
                              causal=False)
            self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
        else:
            self.final_mlp = nn.Sequential(
                    nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
                    nn.SiLU(),
                    nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
            )
            self.final_conv = nn.Conv1d(args.DiT.in_channels, args.DiT.in_channels, kernel_size=3, padding=1)
        self.transformer_style_condition = args.DiT.style_condition
        self.wavenet_style_condition = args.wavenet.style_condition
        assert args.DiT.style_condition == args.wavenet.style_condition

        self.class_dropout_prob = args.DiT.class_dropout_prob
        self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
        self.res_projection = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)  # residual connection from tranformer output to final output
        self.long_skip_connection = args.DiT.long_skip_connection
        self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)

        self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
                                             args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
                                             args.DiT.hidden_dim)
        if self.style_as_token:
            self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)

    def setup_caches(self, max_batch_size, max_seq_length):
        self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
    def forward(self, x, prompt_x, x_lens, t, style, cond, f0=None, mask_content=False):
        class_dropout = False
        if self.training and torch.rand(1) < self.class_dropout_prob:
            class_dropout = True
        if not self.training and mask_content:
            class_dropout = True
        # cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
        cond_in_module = self.cond_projection

        B, _, T = x.size()


        t1 = self.t_embedder(t)  # (N, D)

        cond = cond_in_module(cond)
        if self.f0_condition and f0 is not None:
            quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device))  # (N, T)
            cond = cond + self.f0_embedder(quantized_f0)

        x = x.transpose(1, 2)
        prompt_x = prompt_x.transpose(1, 2)

        x_in = torch.cat([x, prompt_x, cond], dim=-1)
        if self.transformer_style_condition and not self.style_as_token:
            x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1)
        if class_dropout:
            x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0
        x_in = self.cond_x_merge_linear(x_in)  # (N, T, D)

        if self.style_as_token:
            style = self.style_in(style)
            style = torch.zeros_like(style) if class_dropout else style
            x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
        if self.time_as_token:
            x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
        x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1)
        input_pos = self.input_pos[:x_in.size(1)]  # (T,)
        x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None
        x_res = self.transformer(x_in, None if self.time_as_token else t1.unsqueeze(1), input_pos, x_mask_expanded)
        x_res = x_res[:, 1:] if self.time_as_token else x_res
        x_res = x_res[:, 1:] if self.style_as_token else x_res
        if self.long_skip_connection:
            x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
        if self.final_layer_type == 'wavenet':
            x = self.conv1(x_res)
            x = x.transpose(1, 2)
            t2 = self.t_embedder2(t)
            x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
                x_res)  # long residual connection
            x = self.final_layer(x, t1).transpose(1, 2)
            x = self.conv2(x)
        else:
            x = self.final_mlp(x_res)
            x = x.transpose(1, 2)
            x = self.final_conv(x)
        return x