File size: 16,809 Bytes
8b2e962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""HIFI-GAN"""

import typing as tp
import numpy as np
from scipy.signal import get_window
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d
from torch.nn import ConvTranspose1d
from torch.nn.utils import remove_weight_norm
from torch.nn.utils import weight_norm
from torch.distributions.uniform import Uniform

from torch import sin
from torch.nn.parameter import Parameter


"""hifigan based generator implementation.

This code is modified from https://github.com/jik876/hifi-gan
 ,https://github.com/kan-bayashi/ParallelWaveGAN and
 https://github.com/NVIDIA/BigVGAN

"""
class Snake(nn.Module):
    '''
    Implementation of a sine-based periodic activation function
    Shape:
        - Input: (B, C, T)
        - Output: (B, C, T), same shape as the input
    Parameters:
        - alpha - trainable parameter
    References:
        - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
        https://arxiv.org/abs/2006.08195
    Examples:
        >>> a1 = snake(256)
        >>> x = torch.randn(256)
        >>> x = a1(x)
    '''
    def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
        '''
        Initialization.
        INPUT:
            - in_features: shape of the input
            - alpha: trainable parameter
            alpha is initialized to 1 by default, higher values = higher-frequency.
            alpha will be trained along with the rest of your model.
        '''
        super(Snake, self).__init__()
        self.in_features = in_features

        # initialize alpha
        self.alpha_logscale = alpha_logscale
        if self.alpha_logscale:  # log scale alphas initialized to zeros
            self.alpha = Parameter(torch.zeros(in_features) * alpha)
        else:  # linear scale alphas initialized to ones
            self.alpha = Parameter(torch.ones(in_features) * alpha)

        self.alpha.requires_grad = alpha_trainable

        self.no_div_by_zero = 0.000000001

    def forward(self, x):
        '''
        Forward pass of the function.
        Applies the function to the input elementwise.
        Snake ∶= x + 1/a * sin^2 (xa)
        '''
        alpha = self.alpha.unsqueeze(0).unsqueeze(-1)  # line up with x to [B, C, T]
        if self.alpha_logscale:
            alpha = torch.exp(alpha)
        x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)

        return x

def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)



class ResBlock(torch.nn.Module):
    """Residual block module in HiFiGAN/BigVGAN."""
    def __init__(
        self,
        channels: int = 512,
        kernel_size: int = 3,
        dilations: tp.List[int] = [1, 3, 5],
    ):
        super(ResBlock, self).__init__()
        self.convs1 = nn.ModuleList()
        self.convs2 = nn.ModuleList()

        for dilation in dilations:
            self.convs1.append(
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation,
                        padding=get_padding(kernel_size, dilation)
                    )
                )
            )
            self.convs2.append(
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1)
                    )
                )
            )
        self.convs1.apply(init_weights)
        self.convs2.apply(init_weights)
        self.activations1 = nn.ModuleList([
            Snake(channels, alpha_logscale=False)
            for _ in range(len(self.convs1))
        ])
        self.activations2 = nn.ModuleList([
            Snake(channels, alpha_logscale=False)
            for _ in range(len(self.convs2))
        ])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for idx in range(len(self.convs1)):
            xt = self.activations1[idx](x)
            xt = self.convs1[idx](xt)
            xt = self.activations2[idx](xt)
            xt = self.convs2[idx](xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for idx in range(len(self.convs1)):
            remove_weight_norm(self.convs1[idx])
            remove_weight_norm(self.convs2[idx])

class SineGen(torch.nn.Module):
    """ Definition of sine generator
    SineGen(samp_rate, harmonic_num = 0,
            sine_amp = 0.1, noise_std = 0.003,
            voiced_threshold = 0,
            flag_for_pulse=False)
    samp_rate: sampling rate in Hz
    harmonic_num: number of harmonic overtones (default 0)
    sine_amp: amplitude of sine-wavefrom (default 0.1)
    noise_std: std of Gaussian noise (default 0.003)
    voiced_thoreshold: F0 threshold for U/V classification (default 0)
    flag_for_pulse: this SinGen is used inside PulseGen (default False)
    Note: when flag_for_pulse is True, the first time step of a voiced
        segment is always sin(np.pi) or cos(0)
    """

    def __init__(self, samp_rate, harmonic_num=0,
                 sine_amp=0.1, noise_std=0.003,
                 voiced_threshold=0):
        super(SineGen, self).__init__()
        self.sine_amp = sine_amp
        self.noise_std = noise_std
        self.harmonic_num = harmonic_num
        self.sampling_rate = samp_rate
        self.voiced_threshold = voiced_threshold

    def _f02uv(self, f0):
        # generate uv signal
        uv = (f0 > self.voiced_threshold).type(torch.float32)
        return uv

    @torch.no_grad()
    def forward(self, f0):
        """
        :param f0: [B, 1, sample_len], Hz
        :return: [B, 1, sample_len]
        """

        F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
        for i in range(self.harmonic_num + 1):
            F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate

        theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
        u_dist = Uniform(low=-np.pi, high=np.pi)
        phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
        phase_vec[:, 0, :] = 0

        # generate sine waveforms
        sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)

        # generate uv signal
        uv = self._f02uv(f0)

        # noise: for unvoiced should be similar to sine_amp
        #        std = self.sine_amp/3 -> max value ~ self.sine_amp
        # .       for voiced regions is self.noise_std
        noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
        noise = noise_amp * torch.randn_like(sine_waves)

        # first: set the unvoiced part to 0 by uv
        # then: additive noise
        sine_waves = sine_waves * uv + noise
        return sine_waves, uv, noise


class SourceModuleHnNSF(torch.nn.Module):
    """ SourceModule for hn-nsf
    SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
                 add_noise_std=0.003, voiced_threshod=0)
    sampling_rate: sampling_rate in Hz
    harmonic_num: number of harmonic above F0 (default: 0)
    sine_amp: amplitude of sine source signal (default: 0.1)
    add_noise_std: std of additive Gaussian noise (default: 0.003)
        note that amplitude of noise in unvoiced is decided
        by sine_amp
    voiced_threshold: threhold to set U/V given F0 (default: 0)
    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
    F0_sampled (batchsize, length, 1)
    Sine_source (batchsize, length, 1)
    noise_source (batchsize, length 1)
    uv (batchsize, length, 1)
    """

    def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
                 add_noise_std=0.003, voiced_threshod=0):
        super(SourceModuleHnNSF, self).__init__()

        self.sine_amp = sine_amp
        self.noise_std = add_noise_std

        # to produce sine waveforms
        self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
                                 sine_amp, add_noise_std, voiced_threshod)

        # to merge source harmonics into a single excitation
        self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
        self.l_tanh = torch.nn.Tanh()

    def forward(self, x):
        """
        Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
        F0_sampled (batchsize, length, 1)
        Sine_source (batchsize, length, 1)
        noise_source (batchsize, length 1)
        """
        # source for harmonic branch
        with torch.no_grad():
            sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
            sine_wavs = sine_wavs.transpose(1, 2)
            uv = uv.transpose(1, 2)
        sine_merge = self.l_tanh(self.l_linear(sine_wavs))

        # source for noise branch, in the same shape as uv
        noise = torch.randn_like(uv) * self.sine_amp / 3
        return sine_merge, noise, uv


class HiFTGenerator(nn.Module):
    """
    HiFTNet Generator: Neural Source Filter + ISTFTNet
    https://arxiv.org/abs/2309.09493
    """
    def __init__(
            self,
            in_channels: int = 80,
            base_channels: int = 512,
            nb_harmonics: int = 8,
            sampling_rate: int = 22050,
            nsf_alpha: float = 0.1,
            nsf_sigma: float = 0.003,
            nsf_voiced_threshold: float = 10,
            upsample_rates: tp.List[int] = [8, 8],
            upsample_kernel_sizes: tp.List[int] = [16, 16],
            istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
            resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
            resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
            source_resblock_kernel_sizes: tp.List[int] = [7, 11],
            source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
            lrelu_slope: float = 0.1,
            audio_limit: float = 0.99,
            f0_predictor: torch.nn.Module = None,
    ):
        super(HiFTGenerator, self).__init__()

        self.out_channels = 1
        self.nb_harmonics = nb_harmonics
        self.sampling_rate = sampling_rate
        self.istft_params = istft_params
        self.lrelu_slope = lrelu_slope
        self.audio_limit = audio_limit

        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.m_source = SourceModuleHnNSF(
            sampling_rate=sampling_rate,
            upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
            harmonic_num=nb_harmonics,
            sine_amp=nsf_alpha,
            add_noise_std=nsf_sigma,
            voiced_threshod=nsf_voiced_threshold)
        self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])

        self.conv_pre = weight_norm(
            Conv1d(in_channels, base_channels, 7, 1, padding=3)
        )

        # Up
        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        base_channels // (2**i),
                        base_channels // (2**(i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )

        # Down
        self.source_downs = nn.ModuleList()
        self.source_resblocks = nn.ModuleList()
        downsample_rates = [1] + upsample_rates[::-1][:-1]
        downsample_cum_rates = np.cumprod(downsample_rates)
        for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
                                          source_resblock_dilation_sizes)):
            if u == 1:
                self.source_downs.append(
                    Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
                )
            else:
                self.source_downs.append(
                    Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
                )

            self.source_resblocks.append(
                ResBlock(base_channels // (2 ** (i + 1)), k, d)
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = base_channels // (2**(i + 1))
            for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
                self.resblocks.append(ResBlock(ch, k, d))

        self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)
        self.reflection_pad = nn.ReflectionPad1d((1, 0))
        self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
        self.f0_predictor = f0_predictor

    def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
        f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t

        har_source, _, _ = self.m_source(f0)
        return har_source.transpose(1, 2)

    def _stft(self, x):
        spec = torch.stft(
            x,
            self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
            return_complex=True)
        spec = torch.view_as_real(spec)  # [B, F, TT, 2]
        return spec[..., 0], spec[..., 1]

    def _istft(self, magnitude, phase):
        magnitude = torch.clip(magnitude, max=1e2)
        real = magnitude * torch.cos(phase)
        img = magnitude * torch.sin(phase)
        inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
        return inverse_transform

    def forward(self, x: torch.Tensor, f0=None) -> torch.Tensor:
        if f0 is None:
            f0 = self.f0_predictor(x)
        s = self._f02source(f0)

        s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
        s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)

        x = self.conv_pre(x)
        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, self.lrelu_slope)
            x = self.ups[i](x)

            if i == self.num_upsamples - 1:
                x = self.reflection_pad(x)

            # fusion
            si = self.source_downs[i](s_stft)
            si = self.source_resblocks[i](si)
            x = x + si

            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels

        x = F.leaky_relu(x)
        x = self.conv_post(x)
        magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
        phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :])  # actually, sin is redundancy

        x = self._istft(magnitude, phase)
        x = torch.clamp(x, -self.audio_limit, self.audio_limit)
        return x

    def remove_weight_norm(self):
        print('Removing weight norm...')
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()
        remove_weight_norm(self.conv_pre)
        remove_weight_norm(self.conv_post)
        self.source_module.remove_weight_norm()
        for l in self.source_downs:
            remove_weight_norm(l)
        for l in self.source_resblocks:
            l.remove_weight_norm()

    @torch.inference_mode()
    def inference(self, mel: torch.Tensor, f0=None) -> torch.Tensor:
        return self.forward(x=mel, f0=f0)