Spaces:
Running
Running
File size: 3,413 Bytes
f32cd36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from pathlib import Path
import argbind
from audiotools import ml
import dac
DAC = dac.model.DAC
Accelerator = ml.Accelerator
__MODEL_LATEST_TAGS__ = {
("44khz", "8kbps"): "0.0.1",
("24khz", "8kbps"): "0.0.4",
("16khz", "8kbps"): "0.0.5",
("44khz", "16kbps"): "1.0.0",
}
__MODEL_URLS__ = {
(
"44khz",
"0.0.1",
"8kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.1/weights.pth",
(
"24khz",
"0.0.4",
"8kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.4/weights_24khz.pth",
(
"16khz",
"0.0.5",
"8kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.5/weights_16khz.pth",
(
"44khz",
"1.0.0",
"16kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/1.0.0/weights_44khz_16kbps.pth",
}
@argbind.bind(group="download", positional=True, without_prefix=True)
def download(
model_type: str = "44khz", model_bitrate: str = "8kbps", tag: str = "latest"
):
"""
Function that downloads the weights file from URL if a local cache is not found.
Parameters
----------
model_type : str
The type of model to download. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz".
model_bitrate: str
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
Only 44khz model supports 16kbps.
tag : str
The tag of the model to download. Defaults to "latest".
Returns
-------
Path
Directory path required to load model via audiotools.
"""
model_type = model_type.lower()
tag = tag.lower()
assert model_type in [
"44khz",
"24khz",
"16khz",
], "model_type must be one of '44khz', '24khz', or '16khz'"
assert model_bitrate in [
"8kbps",
"16kbps",
], "model_bitrate must be one of '8kbps', or '16kbps'"
if tag == "latest":
tag = __MODEL_LATEST_TAGS__[(model_type, model_bitrate)]
download_link = __MODEL_URLS__.get((model_type, tag, model_bitrate), None)
if download_link is None:
raise ValueError(
f"Could not find model with tag {tag} and model type {model_type}"
)
local_path = (
Path.home()
/ ".cache"
/ "descript"
/ "dac"
/ f"weights_{model_type}_{model_bitrate}_{tag}.pth"
)
if not local_path.exists():
local_path.parent.mkdir(parents=True, exist_ok=True)
# Download the model
import requests
response = requests.get(download_link)
if response.status_code != 200:
raise ValueError(
f"Could not download model. Received response code {response.status_code}"
)
local_path.write_bytes(response.content)
return local_path
def load_model(
model_type: str = "44khz",
model_bitrate: str = "8kbps",
tag: str = "latest",
load_path: str = None,
):
if not load_path:
load_path = download(
model_type=model_type, model_bitrate=model_bitrate, tag=tag
)
generator = DAC.load(load_path)
return generator
|