Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torchaudio | |
import librosa | |
from modules.commons import build_model, load_checkpoint, recursive_munch | |
import yaml | |
from hf_utils import load_custom_model_from_hf | |
# Load model and configuration | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", | |
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth", | |
"config_dit_mel_seed_facodec_small_wavenet.yml") | |
config = yaml.safe_load(open(dit_config_path, 'r')) | |
model_params = recursive_munch(config['model_params']) | |
model = build_model(model_params, stage='DiT') | |
hop_length = config['preprocess_params']['spect_params']['hop_length'] | |
sr = config['preprocess_params']['sr'] | |
# Load checkpoints | |
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, | |
load_only_params=True, ignore_modules=[], is_distributed=False) | |
for key in model: | |
model[key].eval() | |
model[key].to(device) | |
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) | |
# Load additional modules | |
from modules.campplus.DTDNN import CAMPPlus | |
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) | |
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path'], map_location='cpu')) | |
campplus_model.eval() | |
campplus_model.to(device) | |
from modules.hifigan.generator import HiFTGenerator | |
from modules.hifigan.f0_predictor import ConvRNNF0Predictor | |
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC", | |
"hift.pt", | |
"hifigan.yml") | |
hift_config = yaml.safe_load(open(hift_config_path, 'r')) | |
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) | |
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu')) | |
hift_gen.eval() | |
hift_gen.to(device) | |
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice') | |
if speech_tokenizer_type == 'cosyvoice': | |
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd | |
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None) | |
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path, | |
device='cuda', device_id=0) | |
elif speech_tokenizer_type == 'facodec': | |
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml') | |
codec_config = yaml.safe_load(open(config_path)) | |
codec_model_params = recursive_munch(codec_config['model_params']) | |
codec_encoder = build_model(codec_model_params, stage="codec") | |
ckpt_params = torch.load(ckpt_path, map_location="cpu") | |
for key in codec_encoder: | |
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False) | |
_ = [codec_encoder[key].eval() for key in codec_encoder] | |
_ = [codec_encoder[key].to(device) for key in codec_encoder] | |
# Generate mel spectrograms | |
mel_fn_args = { | |
"n_fft": config['preprocess_params']['spect_params']['n_fft'], | |
"win_size": config['preprocess_params']['spect_params']['win_length'], | |
"hop_size": config['preprocess_params']['spect_params']['hop_length'], | |
"num_mels": config['preprocess_params']['spect_params']['n_mels'], | |
"sampling_rate": sr, | |
"fmin": 0, | |
"fmax": 8000, | |
"center": False | |
} | |
from modules.audio import mel_spectrogram | |
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) | |
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers): | |
# Load audio | |
source_audio = librosa.load(source, sr=sr)[0] | |
ref_audio = librosa.load(target, sr=sr)[0] | |
# source_sr, source_audio = source | |
# ref_sr, ref_audio = target | |
# # if any of the inputs has 2 channels, take the first only | |
# if source_audio.ndim == 2: | |
# source_audio = source_audio[:, 0] | |
# if ref_audio.ndim == 2: | |
# ref_audio = ref_audio[:, 0] | |
# | |
# source_audio, ref_audio = source_audio / 32768.0, ref_audio / 32768.0 | |
# | |
# # if source or audio sr not equal to default sr, resample | |
# if source_sr != sr: | |
# source_audio = librosa.resample(source_audio, source_sr, sr) | |
# if ref_sr != sr: | |
# ref_audio = librosa.resample(ref_audio, ref_sr, sr) | |
# Process audio | |
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device) | |
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device) | |
# Resample | |
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) | |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) | |
# Extract features | |
if speech_tokenizer_type == 'cosyvoice': | |
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0] | |
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0] | |
elif speech_tokenizer_type == 'facodec': | |
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000) | |
wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device) | |
waves_input = converted_waves_24k.unsqueeze(1) | |
z = codec_encoder.encoder(waves_input) | |
( | |
quantized, | |
codes | |
) = codec_encoder.quantizer( | |
z, | |
waves_input, | |
) | |
S_alt = torch.cat([codes[1], codes[0]], dim=1) | |
# S_ori should be extracted in the same way | |
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000) | |
waves_input = waves_24k.unsqueeze(1) | |
z = codec_encoder.encoder(waves_input) | |
( | |
quantized, | |
codes | |
) = codec_encoder.quantizer( | |
z, | |
waves_input, | |
) | |
S_ori = torch.cat([codes[1], codes[0]], dim=1) | |
mel = to_mel(source_audio.to(device).float()) | |
mel2 = to_mel(ref_audio.to(device).float()) | |
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) | |
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) | |
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, | |
num_mel_bins=80, | |
dither=0, | |
sample_frequency=16000) | |
feat2 = feat2 - feat2.mean(dim=0, keepdim=True) | |
style2 = campplus_model(feat2.unsqueeze(0)) | |
# Length regulation | |
cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0] | |
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0] | |
cat_condition = torch.cat([prompt_condition, cond], dim=1) | |
# Voice Conversion | |
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), | |
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate) | |
vc_target = vc_target[:, :, mel2.size(-1):] | |
# Convert to waveform | |
vc_wave = hift_gen.inference(vc_target) | |
return sr, vc_wave.squeeze(0).cpu().numpy() | |
if __name__ == "__main__": | |
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates." | |
inputs = [ | |
gr.Audio(type="filepath", label="Source Audio"), | |
gr.Audio(type="filepath", label="Reference Audio"), | |
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"), | |
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"), | |
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"), | |
] | |
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]] | |
outputs = gr.Audio(label="Output Audio") | |
gr.Interface(fn=voice_conversion, | |
description=description, | |
inputs=inputs, | |
outputs=outputs, | |
title="Seed Voice Conversion", | |
examples=examples, | |
).launch() |