Seed-VC / app.py
Plachta's picture
Upload 42 files
f32cd36 verified
raw
history blame
8.9 kB
import gradio as gr
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
"config_dit_mel_seed_facodec_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load additional modules
from modules.campplus.DTDNN import CAMPPlus
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
campplus_model.eval()
campplus_model.to(device)
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"hift.pt",
"hifigan.yml")
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
hift_gen.eval()
hift_gen.to(device)
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
if speech_tokenizer_type == 'cosyvoice':
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
device='cuda', device_id=0)
elif speech_tokenizer_type == 'facodec':
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]
# Generate mel spectrograms
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": 8000,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers):
# Load audio
source_audio = librosa.load(source, sr=sr)[0]
ref_audio = librosa.load(target, sr=sr)[0]
# source_sr, source_audio = source
# ref_sr, ref_audio = target
# # if any of the inputs has 2 channels, take the first only
# if source_audio.ndim == 2:
# source_audio = source_audio[:, 0]
# if ref_audio.ndim == 2:
# ref_audio = ref_audio[:, 0]
#
# source_audio, ref_audio = source_audio / 32768.0, ref_audio / 32768.0
#
# # if source or audio sr not equal to default sr, resample
# if source_sr != sr:
# source_audio = librosa.resample(source_audio, source_sr, sr)
# if ref_sr != sr:
# ref_audio = librosa.resample(ref_audio, ref_sr, sr)
# Process audio
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
# Resample
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
# Extract features
if speech_tokenizer_type == 'cosyvoice':
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
elif speech_tokenizer_type == 'facodec':
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device)
waves_input = converted_waves_24k.unsqueeze(1)
z = codec_encoder.encoder(waves_input)
(
quantized,
codes
) = codec_encoder.quantizer(
z,
waves_input,
)
S_alt = torch.cat([codes[1], codes[0]], dim=1)
# S_ori should be extracted in the same way
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
waves_input = waves_24k.unsqueeze(1)
z = codec_encoder.encoder(waves_input)
(
quantized,
codes
) = codec_encoder.quantizer(
z,
waves_input,
)
S_ori = torch.cat([codes[1], codes[0]], dim=1)
mel = to_mel(source_audio.to(device).float())
mel2 = to_mel(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
# Length regulation
cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0]
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0]
cat_condition = torch.cat([prompt_condition, cond], dim=1)
# Voice Conversion
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, mel2.size(-1):]
# Convert to waveform
vc_wave = hift_gen.inference(vc_target)
return sr, vc_wave.squeeze(0).cpu().numpy()
if __name__ == "__main__":
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
inputs = [
gr.Audio(type="filepath", label="Source Audio"),
gr.Audio(type="filepath", label="Reference Audio"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"),
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"),
]
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]]
outputs = gr.Audio(label="Output Audio")
gr.Interface(fn=voice_conversion,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion",
examples=examples,
).launch()