Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,141 +1,141 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
import torchaudio
|
5 |
-
import librosa
|
6 |
-
from modules.commons import build_model, load_checkpoint, recursive_munch
|
7 |
-
import yaml
|
8 |
-
from hf_utils import load_custom_model_from_hf
|
9 |
-
|
10 |
-
# Load model and configuration
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
-
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
14 |
-
"DiT_step_315000_seed_v2_online_pruned.pth",
|
15 |
-
"config_dit_mel_seed.yml")
|
16 |
-
|
17 |
-
config = yaml.safe_load(open(dit_config_path, 'r'))
|
18 |
-
model_params = recursive_munch(config['model_params'])
|
19 |
-
model = build_model(model_params, stage='DiT')
|
20 |
-
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
21 |
-
sr = config['preprocess_params']['sr']
|
22 |
-
|
23 |
-
# Load checkpoints
|
24 |
-
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
25 |
-
load_only_params=True, ignore_modules=[], is_distributed=False)
|
26 |
-
for key in model:
|
27 |
-
model[key].eval()
|
28 |
-
model[key].to(device)
|
29 |
-
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
30 |
-
|
31 |
-
# Load additional modules
|
32 |
-
from modules.campplus.DTDNN import CAMPPlus
|
33 |
-
|
34 |
-
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
35 |
-
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
|
36 |
-
campplus_model.eval()
|
37 |
-
campplus_model.to(device)
|
38 |
-
|
39 |
-
from modules.hifigan.generator import HiFTGenerator
|
40 |
-
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
41 |
-
|
42 |
-
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
43 |
-
"hift.pt",
|
44 |
-
"hifigan.yml")
|
45 |
-
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
|
46 |
-
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
47 |
-
hift_gen.load_state_dict(torch.load(
|
48 |
-
hift_gen.eval()
|
49 |
-
hift_gen.to(device)
|
50 |
-
|
51 |
-
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
|
52 |
-
|
53 |
-
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
|
54 |
-
|
55 |
-
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
|
56 |
-
device='cuda', device_id=0)
|
57 |
-
# Generate mel spectrograms
|
58 |
-
mel_fn_args = {
|
59 |
-
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
60 |
-
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
61 |
-
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
62 |
-
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
63 |
-
"sampling_rate": sr,
|
64 |
-
"fmin": 0,
|
65 |
-
"fmax": 8000,
|
66 |
-
"center": False
|
67 |
-
}
|
68 |
-
from modules.audio import mel_spectrogram
|
69 |
-
|
70 |
-
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
71 |
-
|
72 |
-
@spaces.GPU
|
73 |
-
@torch.no_grad()
|
74 |
-
@torch.inference_mode()
|
75 |
-
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate):
|
76 |
-
# Load audio
|
77 |
-
source_audio = librosa.load(source, sr=sr)[0]
|
78 |
-
ref_audio = librosa.load(target, sr=sr)[0]
|
79 |
-
|
80 |
-
# Process audio
|
81 |
-
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
82 |
-
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
83 |
-
|
84 |
-
# Resample
|
85 |
-
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
86 |
-
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
87 |
-
|
88 |
-
# Extract features
|
89 |
-
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
|
90 |
-
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
|
91 |
-
|
92 |
-
mel = to_mel(source_audio.to(device).float())
|
93 |
-
mel2 = to_mel(ref_audio.to(device).float())
|
94 |
-
|
95 |
-
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
96 |
-
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
97 |
-
|
98 |
-
# Style encoding
|
99 |
-
feat = torchaudio.compliance.kaldi.fbank(source_waves_16k,
|
100 |
-
num_mel_bins=80,
|
101 |
-
dither=0,
|
102 |
-
sample_frequency=16000)
|
103 |
-
feat = feat - feat.mean(dim=0, keepdim=True)
|
104 |
-
style1 = campplus_model(feat.unsqueeze(0))
|
105 |
-
|
106 |
-
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
107 |
-
num_mel_bins=80,
|
108 |
-
dither=0,
|
109 |
-
sample_frequency=16000)
|
110 |
-
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
111 |
-
style2 = campplus_model(feat2.unsqueeze(0))
|
112 |
-
|
113 |
-
# Length regulation
|
114 |
-
cond = model.length_regulator(S_alt, ylens=target_lengths)[0]
|
115 |
-
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths)[0]
|
116 |
-
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
117 |
-
|
118 |
-
# Voice Conversion
|
119 |
-
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
120 |
-
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
|
121 |
-
vc_target = vc_target[:, :, mel2.size(-1):]
|
122 |
-
|
123 |
-
# Convert to waveform
|
124 |
-
vc_wave = hift_gen.inference(vc_target)
|
125 |
-
|
126 |
-
return (sr, vc_wave.squeeze(0).cpu().numpy())
|
127 |
-
|
128 |
-
|
129 |
-
if __name__ == "__main__":
|
130 |
-
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
|
131 |
-
inputs = [
|
132 |
-
gr.Audio(source="upload", type="filepath", label="Source Audio"),
|
133 |
-
gr.Audio(source="upload", type="filepath", label="Reference Audio"),
|
134 |
-
gr.Slider(minimum=1, maximum=1000, value=100, step=1, label="Diffusion Steps"),
|
135 |
-
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust"),
|
136 |
-
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate"),
|
137 |
-
]
|
138 |
-
|
139 |
-
outputs = gr.Audio(label="Output Audio")
|
140 |
-
|
141 |
gr.Interface(fn=voice_conversion, description=description, inputs=inputs, outputs=outputs, title="Seed Voice Conversion").launch()
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import librosa
|
6 |
+
from modules.commons import build_model, load_checkpoint, recursive_munch
|
7 |
+
import yaml
|
8 |
+
from hf_utils import load_custom_model_from_hf
|
9 |
+
|
10 |
+
# Load model and configuration
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
14 |
+
"DiT_step_315000_seed_v2_online_pruned.pth",
|
15 |
+
"config_dit_mel_seed.yml")
|
16 |
+
|
17 |
+
config = yaml.safe_load(open(dit_config_path, 'r'))
|
18 |
+
model_params = recursive_munch(config['model_params'])
|
19 |
+
model = build_model(model_params, stage='DiT')
|
20 |
+
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
21 |
+
sr = config['preprocess_params']['sr']
|
22 |
+
|
23 |
+
# Load checkpoints
|
24 |
+
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
25 |
+
load_only_params=True, ignore_modules=[], is_distributed=False)
|
26 |
+
for key in model:
|
27 |
+
model[key].eval()
|
28 |
+
model[key].to(device)
|
29 |
+
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
30 |
+
|
31 |
+
# Load additional modules
|
32 |
+
from modules.campplus.DTDNN import CAMPPlus
|
33 |
+
|
34 |
+
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
35 |
+
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
|
36 |
+
campplus_model.eval()
|
37 |
+
campplus_model.to(device)
|
38 |
+
|
39 |
+
from modules.hifigan.generator import HiFTGenerator
|
40 |
+
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
41 |
+
|
42 |
+
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
43 |
+
"hift.pt",
|
44 |
+
"hifigan.yml")
|
45 |
+
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
|
46 |
+
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
47 |
+
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
|
48 |
+
hift_gen.eval()
|
49 |
+
hift_gen.to(device)
|
50 |
+
|
51 |
+
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
|
52 |
+
|
53 |
+
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
|
54 |
+
|
55 |
+
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
|
56 |
+
device='cuda', device_id=0)
|
57 |
+
# Generate mel spectrograms
|
58 |
+
mel_fn_args = {
|
59 |
+
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
60 |
+
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
61 |
+
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
62 |
+
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
63 |
+
"sampling_rate": sr,
|
64 |
+
"fmin": 0,
|
65 |
+
"fmax": 8000,
|
66 |
+
"center": False
|
67 |
+
}
|
68 |
+
from modules.audio import mel_spectrogram
|
69 |
+
|
70 |
+
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
71 |
+
|
72 |
+
@spaces.GPU
|
73 |
+
@torch.no_grad()
|
74 |
+
@torch.inference_mode()
|
75 |
+
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate):
|
76 |
+
# Load audio
|
77 |
+
source_audio = librosa.load(source, sr=sr)[0]
|
78 |
+
ref_audio = librosa.load(target, sr=sr)[0]
|
79 |
+
|
80 |
+
# Process audio
|
81 |
+
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
82 |
+
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
83 |
+
|
84 |
+
# Resample
|
85 |
+
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
86 |
+
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
87 |
+
|
88 |
+
# Extract features
|
89 |
+
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
|
90 |
+
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
|
91 |
+
|
92 |
+
mel = to_mel(source_audio.to(device).float())
|
93 |
+
mel2 = to_mel(ref_audio.to(device).float())
|
94 |
+
|
95 |
+
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
96 |
+
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
97 |
+
|
98 |
+
# Style encoding
|
99 |
+
feat = torchaudio.compliance.kaldi.fbank(source_waves_16k,
|
100 |
+
num_mel_bins=80,
|
101 |
+
dither=0,
|
102 |
+
sample_frequency=16000)
|
103 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
104 |
+
style1 = campplus_model(feat.unsqueeze(0))
|
105 |
+
|
106 |
+
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
107 |
+
num_mel_bins=80,
|
108 |
+
dither=0,
|
109 |
+
sample_frequency=16000)
|
110 |
+
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
111 |
+
style2 = campplus_model(feat2.unsqueeze(0))
|
112 |
+
|
113 |
+
# Length regulation
|
114 |
+
cond = model.length_regulator(S_alt, ylens=target_lengths)[0]
|
115 |
+
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths)[0]
|
116 |
+
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
117 |
+
|
118 |
+
# Voice Conversion
|
119 |
+
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
120 |
+
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
|
121 |
+
vc_target = vc_target[:, :, mel2.size(-1):]
|
122 |
+
|
123 |
+
# Convert to waveform
|
124 |
+
vc_wave = hift_gen.inference(vc_target)
|
125 |
+
|
126 |
+
return (sr, vc_wave.squeeze(0).cpu().numpy())
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == "__main__":
|
130 |
+
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
|
131 |
+
inputs = [
|
132 |
+
gr.Audio(source="upload", type="filepath", label="Source Audio"),
|
133 |
+
gr.Audio(source="upload", type="filepath", label="Reference Audio"),
|
134 |
+
gr.Slider(minimum=1, maximum=1000, value=100, step=1, label="Diffusion Steps"),
|
135 |
+
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust"),
|
136 |
+
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate"),
|
137 |
+
]
|
138 |
+
|
139 |
+
outputs = gr.Audio(label="Output Audio")
|
140 |
+
|
141 |
gr.Interface(fn=voice_conversion, description=description, inputs=inputs, outputs=outputs, title="Seed Voice Conversion").launch()
|