Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,195 +1,195 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import torchaudio
|
4 |
-
import librosa
|
5 |
-
from modules.commons import build_model, load_checkpoint, recursive_munch
|
6 |
-
import yaml
|
7 |
-
from hf_utils import load_custom_model_from_hf
|
8 |
-
|
9 |
-
# Load model and configuration
|
10 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
-
|
12 |
-
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
13 |
-
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
|
14 |
-
"config_dit_mel_seed_facodec_small_wavenet.yml")
|
15 |
-
|
16 |
-
config = yaml.safe_load(open(dit_config_path, 'r'))
|
17 |
-
model_params = recursive_munch(config['model_params'])
|
18 |
-
model = build_model(model_params, stage='DiT')
|
19 |
-
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
20 |
-
sr = config['preprocess_params']['sr']
|
21 |
-
|
22 |
-
# Load checkpoints
|
23 |
-
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
24 |
-
load_only_params=True, ignore_modules=[], is_distributed=False)
|
25 |
-
for key in model:
|
26 |
-
model[key].eval()
|
27 |
-
model[key].to(device)
|
28 |
-
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
29 |
-
|
30 |
-
# Load additional modules
|
31 |
-
from modules.campplus.DTDNN import CAMPPlus
|
32 |
-
|
33 |
-
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
34 |
-
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
|
35 |
-
campplus_model.eval()
|
36 |
-
campplus_model.to(device)
|
37 |
-
|
38 |
-
from modules.hifigan.generator import HiFTGenerator
|
39 |
-
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
40 |
-
|
41 |
-
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
42 |
-
"hift.pt",
|
43 |
-
"hifigan.yml")
|
44 |
-
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
|
45 |
-
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
46 |
-
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
|
47 |
-
hift_gen.eval()
|
48 |
-
hift_gen.to(device)
|
49 |
-
|
50 |
-
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
|
51 |
-
if speech_tokenizer_type == 'cosyvoice':
|
52 |
-
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
|
53 |
-
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
|
54 |
-
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
|
55 |
-
device='cuda', device_id=0)
|
56 |
-
elif speech_tokenizer_type == 'facodec':
|
57 |
-
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
58 |
-
|
59 |
-
codec_config = yaml.safe_load(open(config_path))
|
60 |
-
codec_model_params = recursive_munch(codec_config['model_params'])
|
61 |
-
codec_encoder = build_model(codec_model_params, stage="codec")
|
62 |
-
|
63 |
-
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
64 |
-
|
65 |
-
for key in codec_encoder:
|
66 |
-
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
|
67 |
-
_ = [codec_encoder[key].eval() for key in codec_encoder]
|
68 |
-
_ = [codec_encoder[key].to(device) for key in codec_encoder]
|
69 |
-
# Generate mel spectrograms
|
70 |
-
mel_fn_args = {
|
71 |
-
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
72 |
-
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
73 |
-
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
74 |
-
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
75 |
-
"sampling_rate": sr,
|
76 |
-
"fmin": 0,
|
77 |
-
"fmax": 8000,
|
78 |
-
"center": False
|
79 |
-
}
|
80 |
-
from modules.audio import mel_spectrogram
|
81 |
-
|
82 |
-
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
83 |
-
|
84 |
-
@torch.no_grad()
|
85 |
-
@torch.inference_mode()
|
86 |
-
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers):
|
87 |
-
# Load audio
|
88 |
-
source_audio = librosa.load(source, sr=sr)[0]
|
89 |
-
ref_audio = librosa.load(target, sr=sr)[0]
|
90 |
-
# source_sr, source_audio = source
|
91 |
-
# ref_sr, ref_audio = target
|
92 |
-
# # if any of the inputs has 2 channels, take the first only
|
93 |
-
# if source_audio.ndim == 2:
|
94 |
-
# source_audio = source_audio[:, 0]
|
95 |
-
# if ref_audio.ndim == 2:
|
96 |
-
# ref_audio = ref_audio[:, 0]
|
97 |
-
#
|
98 |
-
# source_audio, ref_audio = source_audio / 32768.0, ref_audio / 32768.0
|
99 |
-
#
|
100 |
-
# # if source or audio sr not equal to default sr, resample
|
101 |
-
# if source_sr != sr:
|
102 |
-
# source_audio = librosa.resample(source_audio, source_sr, sr)
|
103 |
-
# if ref_sr != sr:
|
104 |
-
# ref_audio = librosa.resample(ref_audio, ref_sr, sr)
|
105 |
-
|
106 |
-
# Process audio
|
107 |
-
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
108 |
-
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
109 |
-
|
110 |
-
# Resample
|
111 |
-
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
112 |
-
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
113 |
-
|
114 |
-
# Extract features
|
115 |
-
if speech_tokenizer_type == 'cosyvoice':
|
116 |
-
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
|
117 |
-
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
|
118 |
-
elif speech_tokenizer_type == 'facodec':
|
119 |
-
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
|
120 |
-
wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device)
|
121 |
-
waves_input = converted_waves_24k.unsqueeze(1)
|
122 |
-
z = codec_encoder.encoder(waves_input)
|
123 |
-
(
|
124 |
-
quantized,
|
125 |
-
codes
|
126 |
-
) = codec_encoder.quantizer(
|
127 |
-
z,
|
128 |
-
waves_input,
|
129 |
-
)
|
130 |
-
S_alt = torch.cat([codes[1], codes[0]], dim=1)
|
131 |
-
|
132 |
-
# S_ori should be extracted in the same way
|
133 |
-
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
|
134 |
-
waves_input = waves_24k.unsqueeze(1)
|
135 |
-
z = codec_encoder.encoder(waves_input)
|
136 |
-
(
|
137 |
-
quantized,
|
138 |
-
codes
|
139 |
-
) = codec_encoder.quantizer(
|
140 |
-
z,
|
141 |
-
waves_input,
|
142 |
-
)
|
143 |
-
S_ori = torch.cat([codes[1], codes[0]], dim=1)
|
144 |
-
|
145 |
-
mel = to_mel(source_audio.to(device).float())
|
146 |
-
mel2 = to_mel(ref_audio.to(device).float())
|
147 |
-
|
148 |
-
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
149 |
-
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
150 |
-
|
151 |
-
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
152 |
-
num_mel_bins=80,
|
153 |
-
dither=0,
|
154 |
-
sample_frequency=16000)
|
155 |
-
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
156 |
-
style2 = campplus_model(feat2.unsqueeze(0))
|
157 |
-
|
158 |
-
# Length regulation
|
159 |
-
cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0]
|
160 |
-
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0]
|
161 |
-
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
162 |
-
|
163 |
-
# Voice Conversion
|
164 |
-
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
165 |
-
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
|
166 |
-
vc_target = vc_target[:, :, mel2.size(-1):]
|
167 |
-
|
168 |
-
# Convert to waveform
|
169 |
-
vc_wave = hift_gen.inference(vc_target)
|
170 |
-
|
171 |
-
return sr, vc_wave.squeeze(0).cpu().numpy()
|
172 |
-
|
173 |
-
|
174 |
-
if __name__ == "__main__":
|
175 |
-
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
|
176 |
-
inputs = [
|
177 |
-
gr.Audio(type="filepath", label="Source Audio"),
|
178 |
-
gr.Audio(type="filepath", label="Reference Audio"),
|
179 |
-
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"),
|
180 |
-
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
|
181 |
-
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"),
|
182 |
-
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"),
|
183 |
-
]
|
184 |
-
|
185 |
-
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]]
|
186 |
-
|
187 |
-
outputs = gr.Audio(label="Output Audio")
|
188 |
-
|
189 |
-
gr.Interface(fn=voice_conversion,
|
190 |
-
description=description,
|
191 |
-
inputs=inputs,
|
192 |
-
outputs=outputs,
|
193 |
-
title="Seed Voice Conversion",
|
194 |
-
examples=examples,
|
195 |
).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import librosa
|
5 |
+
from modules.commons import build_model, load_checkpoint, recursive_munch
|
6 |
+
import yaml
|
7 |
+
from hf_utils import load_custom_model_from_hf
|
8 |
+
|
9 |
+
# Load model and configuration
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
13 |
+
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
|
14 |
+
"config_dit_mel_seed_facodec_small_wavenet.yml")
|
15 |
+
|
16 |
+
config = yaml.safe_load(open(dit_config_path, 'r'))
|
17 |
+
model_params = recursive_munch(config['model_params'])
|
18 |
+
model = build_model(model_params, stage='DiT')
|
19 |
+
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
20 |
+
sr = config['preprocess_params']['sr']
|
21 |
+
|
22 |
+
# Load checkpoints
|
23 |
+
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
24 |
+
load_only_params=True, ignore_modules=[], is_distributed=False)
|
25 |
+
for key in model:
|
26 |
+
model[key].eval()
|
27 |
+
model[key].to(device)
|
28 |
+
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
29 |
+
|
30 |
+
# Load additional modules
|
31 |
+
from modules.campplus.DTDNN import CAMPPlus
|
32 |
+
|
33 |
+
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
34 |
+
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']), map_location='cpu')
|
35 |
+
campplus_model.eval()
|
36 |
+
campplus_model.to(device)
|
37 |
+
|
38 |
+
from modules.hifigan.generator import HiFTGenerator
|
39 |
+
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
40 |
+
|
41 |
+
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
42 |
+
"hift.pt",
|
43 |
+
"hifigan.yml")
|
44 |
+
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
|
45 |
+
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
46 |
+
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
|
47 |
+
hift_gen.eval()
|
48 |
+
hift_gen.to(device)
|
49 |
+
|
50 |
+
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
|
51 |
+
if speech_tokenizer_type == 'cosyvoice':
|
52 |
+
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
|
53 |
+
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
|
54 |
+
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
|
55 |
+
device='cuda', device_id=0)
|
56 |
+
elif speech_tokenizer_type == 'facodec':
|
57 |
+
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
58 |
+
|
59 |
+
codec_config = yaml.safe_load(open(config_path))
|
60 |
+
codec_model_params = recursive_munch(codec_config['model_params'])
|
61 |
+
codec_encoder = build_model(codec_model_params, stage="codec")
|
62 |
+
|
63 |
+
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
64 |
+
|
65 |
+
for key in codec_encoder:
|
66 |
+
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
|
67 |
+
_ = [codec_encoder[key].eval() for key in codec_encoder]
|
68 |
+
_ = [codec_encoder[key].to(device) for key in codec_encoder]
|
69 |
+
# Generate mel spectrograms
|
70 |
+
mel_fn_args = {
|
71 |
+
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
72 |
+
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
73 |
+
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
74 |
+
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
75 |
+
"sampling_rate": sr,
|
76 |
+
"fmin": 0,
|
77 |
+
"fmax": 8000,
|
78 |
+
"center": False
|
79 |
+
}
|
80 |
+
from modules.audio import mel_spectrogram
|
81 |
+
|
82 |
+
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
@torch.inference_mode()
|
86 |
+
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers):
|
87 |
+
# Load audio
|
88 |
+
source_audio = librosa.load(source, sr=sr)[0]
|
89 |
+
ref_audio = librosa.load(target, sr=sr)[0]
|
90 |
+
# source_sr, source_audio = source
|
91 |
+
# ref_sr, ref_audio = target
|
92 |
+
# # if any of the inputs has 2 channels, take the first only
|
93 |
+
# if source_audio.ndim == 2:
|
94 |
+
# source_audio = source_audio[:, 0]
|
95 |
+
# if ref_audio.ndim == 2:
|
96 |
+
# ref_audio = ref_audio[:, 0]
|
97 |
+
#
|
98 |
+
# source_audio, ref_audio = source_audio / 32768.0, ref_audio / 32768.0
|
99 |
+
#
|
100 |
+
# # if source or audio sr not equal to default sr, resample
|
101 |
+
# if source_sr != sr:
|
102 |
+
# source_audio = librosa.resample(source_audio, source_sr, sr)
|
103 |
+
# if ref_sr != sr:
|
104 |
+
# ref_audio = librosa.resample(ref_audio, ref_sr, sr)
|
105 |
+
|
106 |
+
# Process audio
|
107 |
+
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
108 |
+
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
109 |
+
|
110 |
+
# Resample
|
111 |
+
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
112 |
+
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
113 |
+
|
114 |
+
# Extract features
|
115 |
+
if speech_tokenizer_type == 'cosyvoice':
|
116 |
+
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
|
117 |
+
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
|
118 |
+
elif speech_tokenizer_type == 'facodec':
|
119 |
+
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
|
120 |
+
wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device)
|
121 |
+
waves_input = converted_waves_24k.unsqueeze(1)
|
122 |
+
z = codec_encoder.encoder(waves_input)
|
123 |
+
(
|
124 |
+
quantized,
|
125 |
+
codes
|
126 |
+
) = codec_encoder.quantizer(
|
127 |
+
z,
|
128 |
+
waves_input,
|
129 |
+
)
|
130 |
+
S_alt = torch.cat([codes[1], codes[0]], dim=1)
|
131 |
+
|
132 |
+
# S_ori should be extracted in the same way
|
133 |
+
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
|
134 |
+
waves_input = waves_24k.unsqueeze(1)
|
135 |
+
z = codec_encoder.encoder(waves_input)
|
136 |
+
(
|
137 |
+
quantized,
|
138 |
+
codes
|
139 |
+
) = codec_encoder.quantizer(
|
140 |
+
z,
|
141 |
+
waves_input,
|
142 |
+
)
|
143 |
+
S_ori = torch.cat([codes[1], codes[0]], dim=1)
|
144 |
+
|
145 |
+
mel = to_mel(source_audio.to(device).float())
|
146 |
+
mel2 = to_mel(ref_audio.to(device).float())
|
147 |
+
|
148 |
+
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
149 |
+
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
150 |
+
|
151 |
+
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
152 |
+
num_mel_bins=80,
|
153 |
+
dither=0,
|
154 |
+
sample_frequency=16000)
|
155 |
+
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
156 |
+
style2 = campplus_model(feat2.unsqueeze(0))
|
157 |
+
|
158 |
+
# Length regulation
|
159 |
+
cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0]
|
160 |
+
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0]
|
161 |
+
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
162 |
+
|
163 |
+
# Voice Conversion
|
164 |
+
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
165 |
+
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
|
166 |
+
vc_target = vc_target[:, :, mel2.size(-1):]
|
167 |
+
|
168 |
+
# Convert to waveform
|
169 |
+
vc_wave = hift_gen.inference(vc_target)
|
170 |
+
|
171 |
+
return sr, vc_wave.squeeze(0).cpu().numpy()
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
|
176 |
+
inputs = [
|
177 |
+
gr.Audio(type="filepath", label="Source Audio"),
|
178 |
+
gr.Audio(type="filepath", label="Reference Audio"),
|
179 |
+
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"),
|
180 |
+
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
|
181 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"),
|
182 |
+
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"),
|
183 |
+
]
|
184 |
+
|
185 |
+
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]]
|
186 |
+
|
187 |
+
outputs = gr.Audio(label="Output Audio")
|
188 |
+
|
189 |
+
gr.Interface(fn=voice_conversion,
|
190 |
+
description=description,
|
191 |
+
inputs=inputs,
|
192 |
+
outputs=outputs,
|
193 |
+
title="Seed Voice Conversion",
|
194 |
+
examples=examples,
|
195 |
).launch()
|