# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import time from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F from tokenizer import get_tokenizer try: from GPTQ import GenericGPTQRunner, InputRecorder from eval import get_task_dict, evaluate, lm_eval except: pass from model import Transformer ##### Quantization Primitives ###### def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype): # assumes symmetric quantization # assumes axis == 0 # assumes dense memory format # TODO(future): relax ^ as needed # default setup for affine quantization of activations eps = torch.finfo(torch.float32).eps # get min and max min_val, max_val = torch.aminmax(x, dim=1) # calculate scales and zero_points based on min and max # reference: https://fburl.com/code/srbiybme min_val_neg = torch.min(min_val, torch.zeros_like(min_val)) max_val_pos = torch.max(max_val, torch.zeros_like(max_val)) device = min_val_neg.device # reference: https://fburl.com/code/4wll53rk max_val_pos = torch.max(-min_val_neg, max_val_pos) scales = max_val_pos / (float(quant_max - quant_min) / 2) # ensure scales is the same dtype as the original tensor scales = torch.clamp(scales, min=eps).to(x.dtype) zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device) # quantize based on qmin/qmax/scales/zp # reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63 x_div = x / scales.unsqueeze(-1) x_round = torch.round(x_div) x_zp = x_round + zero_points.unsqueeze(-1) quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype) return quant, scales, zero_points def get_group_qparams(w, n_bit=4, groupsize=128): # needed for GPTQ with padding if groupsize > w.shape[-1]: groupsize = w.shape[-1] assert groupsize > 1 assert w.shape[-1] % groupsize == 0 assert w.dim() == 2 to_quant = w.reshape(-1, groupsize) assert torch.isnan(to_quant).sum() == 0 max_val = to_quant.amax(dim=1, keepdim=True) min_val = to_quant.amin(dim=1, keepdim=True) max_int = 2**n_bit - 1 scales = (max_val - min_val).clamp(min=1e-6) / max_int zeros = min_val + scales * (2 ** (n_bit - 1)) return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to( torch.bfloat16 ).reshape(w.shape[0], -1) def pack_scales_and_zeros(scales, zeros): assert scales.shape == zeros.shape assert scales.dtype == torch.bfloat16 assert zeros.dtype == torch.bfloat16 return ( torch.cat( [ scales.reshape(scales.size(0), scales.size(1), 1), zeros.reshape(zeros.size(0), zeros.size(1), 1), ], 2, ) .transpose(0, 1) .contiguous() ) def unpack_scales_and_zeros(scales_and_zeros): assert len(scales_and_zeros.shape) == 3 and scales_and_zeros.shape[2] == 2 assert scales_and_zeros.dtype == torch.float return torch.split(scales_and_zeros.transpose(0, 1), 1, 2) def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128): assert groupsize > 1 # needed for GPTQ single column quantize if groupsize > w.shape[-1] and scales.shape[-1] == 1: groupsize = w.shape[-1] assert w.shape[-1] % groupsize == 0 assert w.dim() == 2 to_quant = w.reshape(-1, groupsize) assert torch.isnan(to_quant).sum() == 0 scales = scales.reshape(-1, 1) zeros = zeros.reshape(-1, 1) min_val = zeros - scales * (2 ** (n_bit - 1)) max_int = 2**n_bit - 1 min_int = 0 w_int32 = ( to_quant.sub(min_val) .div(scales) .round() .clamp_(min_int, max_int) .to(torch.int32) .reshape_as(w) ) return w_int32 def group_quantize_tensor(w, n_bit=4, groupsize=128): scales, zeros = get_group_qparams(w, n_bit, groupsize) w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize) scales_and_zeros = pack_scales_and_zeros(scales, zeros) return w_int32, scales_and_zeros def group_dequantize_tensor_from_qparams( w_int32, scales, zeros, n_bit=4, groupsize=128 ): assert groupsize > 1 # needed for GPTQ single column dequantize if groupsize > w_int32.shape[-1] and scales.shape[-1] == 1: groupsize = w_int32.shape[-1] assert w_int32.shape[-1] % groupsize == 0 assert w_int32.dim() == 2 w_int32_grouped = w_int32.reshape(-1, groupsize) scales = scales.reshape(-1, 1) zeros = zeros.reshape(-1, 1) w_dq = ( w_int32_grouped.sub(2 ** (n_bit - 1)).mul(scales).add(zeros).reshape_as(w_int32) ) return w_dq def group_dequantize_tensor(w_int32, scales_and_zeros, n_bit=4, groupsize=128): scales, zeros = unpack_scales_and_zeros(scales_and_zeros) return group_dequantize_tensor_from_qparams( w_int32, scales, zeros, n_bit, groupsize ) class QuantHandler: def __init__(self, mod): self.mod = mod def create_quantized_state_dict(self) -> "StateDict": pass def convert_for_runtime(self) -> "nn.Module": pass class GPTQQuantHandler(QuantHandler): """ This class implements a GPTQ QuantHandler that can be used to apply GPTQ to a model in concert with the GenericGPTQRunner class. Unlike the base QuantHandler class, the user does not need to implement the create_quantized_state_dict, instead they have to reimplement __init__ such that it defines the functions for the quantization mode. User is expected to reimplement convert_for_runtime. The following functions (which must be defined in __init__) are used to define the quantization mode for both GPTQ and create_quantized_state_dict. Here is a description of each function. get_qparams_func: A function that calculates the quantization qparams for an input tensor. Args: weight: A 2d weight tensor with non-integer dtype. Returns: qparams: it can have any format but will need to be handled by the other defined functions below. quantize_func: A function that applies quantization to an input tensor. It should be noted that this function needs to be able to handle quantizing the entire weight tensor, a single group, or a single column. Args: weight: A 2d weight tensor with non-integer dtype. qparams: the output from get_qparams_func Returns: quantized_weight: A 2d quantized weight tensor (generally with an integer dtype) dequantize_func: A function that dequantizes an input quantized weight tensor. It should be noted that this function needs to be able to handle dequantizing the entire weight tensor, a single group, or a single column. Args: quantized_weight: A 2d quantized weight tensor (generally with an integer dtype) qparams: the output from get_qparams_func Returns: weight: A 2d weight tensor with non-integer dtype. combine_qparams_list_func: A function that combines several qparams into one qparam. Args: qparams_list: a list of qparams objects, each obtained by calling get_qparams_func on a single group from a weight tensor Returns: qparams: an object of the same format as the qparams above. skip_layer_func: A function that determines which linear layers should be skipped during GPTQ Args: weight: A 2d weight tensor with non-integer dtype. Returns: skip: boolean indicating whether layer should be skipped make_names_and_values_dict_func: A function that prepares the qparams and quantized_weight and creates a dictionary indicating how they should be inserted into the state_dict. Generally any packing of the weight and qparams should be done here. Args: quantized_weight: A 2d quantized weight tensor (generally with an integer dtype) qparams: the output from get_qparams_func Returns: names_and_values_dict: a dictionary mapping the name of the parameters of the quantized module to the corresponding quantized weights and qparams. """ def __init__(self): assert self.mod is not None assert self.get_qparams_func is not None assert self.quantize_func is not None assert self.dequantize_func is not None assert self.combine_qparams_list_func is not None assert self.make_names_and_values_dict_func is not None @staticmethod def get_inputs(model, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs) -> "MultiInput": input_recorder = InputRecorder( model, tokenizer, calibration_seq_length, pad_calibration_inputs, ) try: lm_eval.tasks.initialize_tasks() except: pass task_dict = get_task_dict(calibration_tasks) print("Obtaining GPTQ calibration inputs on: ", calibration_tasks) evaluate( input_recorder, task_dict, limit=calibration_limit, ) inputs = input_recorder.get_recorded_inputs() assert inputs is not None, ( f"No inputs were collected, use a task other than {calibration_tasks}, "+ f"use option pad_calibration_inputs, or decrease calibration_sequence_length (currently "+ f"{calibration_seq_length})" ) print(f"Obtained {len(inputs[0].values)} calibration samples") return inputs @torch.no_grad() def create_quantized_state_dict( self, tokenizer, blocksize, percdamp, groupsize, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs, ) -> "StateDict": inputs = GPTQQuantHandler.get_inputs(self.mod, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs) print("Tracing model for GPTQ") GPTQ_runner = GenericGPTQRunner( self.mod, inputs, blocksize, percdamp, groupsize, ).configure_quantization_mode( self.get_qparams_func, self.quantize_func, self.dequantize_func, self.combine_qparams_list_func, self.make_names_and_values_dict_func, self.skip_layer_func ) print("Applying GPTQ to weights") GPTQ_runner.run() return GPTQ_runner.get_quantized_state_dict() def convert_for_runtime(self) -> "nn.Module": pass ##### Weight-only int8 per-channel quantized code ###### def replace_linear_weight_only_int8_per_channel(module): for name, child in module.named_children(): if isinstance(child, nn.Linear): setattr(module, name, WeightOnlyInt8Linear(child.in_features, child.out_features)) else: replace_linear_weight_only_int8_per_channel(child) class WeightOnlyInt8QuantHandler: def __init__(self, mod): self.mod = mod @torch.no_grad() def create_quantized_state_dict(self): cur_state_dict = self.mod.state_dict() for fqn, mod in self.mod.named_modules(): if isinstance(mod, torch.nn.Linear): int8_weight, scales, _ = dynamically_quantize_per_channel(mod.weight.float(), -128, 127, torch.int8) cur_state_dict[f"{fqn}.weight"] = int8_weight cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype) return cur_state_dict def convert_for_runtime(self): replace_linear_weight_only_int8_per_channel(self.mod) return self.mod class WeightOnlyInt8Linear(torch.nn.Module): __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: torch.Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8)) self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16)) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales ##### weight only int4 per channel groupwise quantized code ###### def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles): weight_int32, scales_and_zeros = group_quantize_tensor( weight_bf16, n_bit=4, groupsize=groupsize ) weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles) return weight_int4pack, scales_and_zeros def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize): origin_x_size = x.size() x = x.reshape(-1, origin_x_size[-1]) c = torch.ops.aten._weight_int4pack_mm(x, weight_int4pack, groupsize, scales_and_zeros) new_shape = origin_x_size[:-1] + (out_features,) c = c.reshape(new_shape) return c def _check_linear_int4_k(k, groupsize = 1, inner_k_tiles = 1): return k % groupsize == 0 and k % (inner_k_tiles * 16) == 0 def replace_linear_int4(module, groupsize, inner_k_tiles, padding): for name, child in module.named_children(): if isinstance(child, nn.Linear): if _check_linear_int4_k(child.in_features, groupsize, inner_k_tiles): setattr(module, name, WeightOnlyInt4Linear( child.in_features, child.out_features, bias=False, groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=False, )) elif padding: setattr(module, name, WeightOnlyInt4Linear( child.in_features, child.out_features, bias=False, groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=True, )) else: replace_linear_int4(child, groupsize, inner_k_tiles, padding) class WeightOnlyInt4QuantHandler: def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True): self.mod = mod self.groupsize = groupsize self.inner_k_tiles = inner_k_tiles self.padding = padding assert groupsize in [32, 64, 128, 256] assert inner_k_tiles in [2, 4, 8] @torch.no_grad() def create_quantized_state_dict(self, use_cuda = True): if use_cuda: device="cuda" else: device="cpu" cur_state_dict = self.mod.state_dict() for fqn, mod in self.mod.named_modules(): if isinstance(mod, torch.nn.Linear): assert not mod.bias out_features = mod.out_features in_features = mod.in_features assert out_features % 8 == 0, "require out_features % 8 == 0" print(f"linear: {fqn}, in={in_features}, out={out_features}") weight = mod.weight.data if not _check_linear_int4_k(in_features, self.groupsize, self.inner_k_tiles): if self.padding: from model import find_multiple import torch.nn.functional as F print(f"warning: {fqn} is padded to satisfy in_features % 1024 == 0") padded_in_features = find_multiple(in_features, 1024) weight = F.pad(weight, pad=(0, padded_in_features - in_features)) else: print(f"warning: {fqn} is skipped, int4 requires that in_features is 32, 64, or is divisible by 1024, " + "and that groupsize and inner_k_tiles*16 evenly divide into it") continue weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros( weight.to(torch.bfloat16).to(device=device), self.groupsize, self.inner_k_tiles ) cur_state_dict[f"{fqn}.weight"] = weight_int4pack.to('cpu') cur_state_dict[f"{fqn}.scales_and_zeros"] = scales_and_zeros.to('cpu') return cur_state_dict def convert_for_runtime(self): replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding) return self.mod class WeightOnlyInt4GPTQQuantHandler(GPTQQuantHandler): def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True): from model import find_multiple self.mod = mod self.groupsize = groupsize self.inner_k_tiles = inner_k_tiles self.padding = padding self.get_qparams_func = lambda w: get_group_qparams(w, 4, groupsize) self.quantize_func = lambda w, qparams: \ group_quantize_tensor_from_qparams(w, qparams[0], qparams[1], 4, groupsize) self.dequantize_func = lambda q, qparams: \ group_dequantize_tensor_from_qparams(q, qparams[0], qparams[1], 4, groupsize).float() self.combine_qparams_list_func = lambda qparams_list: \ [torch.cat(x, dim=1) for x in zip(*qparams_list)] # skip unless padding=True or its correctly sized self.skip_layer_func = lambda linear_weight: not ( _check_linear_int4_k(linear_weight.shape[-1], groupsize, inner_k_tiles) or padding ) # we need to do the padding here, both for q and the qparams if necessary def make_names_and_values_dict_func(q, qparams): k = q.shape[1] new_k = find_multiple(k, 1024) # how much we need to pad the weight delta_k = new_k - q.shape[1] final_q = torch.ops.aten._convert_weight_to_int4pack(F.pad(q, pad=(0, delta_k)), inner_k_tiles) scales_and_zeros = pack_scales_and_zeros(*qparams) # how many new groups we need for padded weight delta_groups = new_k // groupsize - scales_and_zeros.shape[0] final_s_and_z = F.pad(scales_and_zeros, pad=(0,0,0,0,0, delta_groups), value=1) return {"weight": final_q, "scales_and_zeros": final_s_and_z} self.make_names_and_values_dict_func = make_names_and_values_dict_func super().__init__() def convert_for_runtime(self): replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding) return self.mod class WeightOnlyInt4Linear(torch.nn.Module): __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: torch.Tensor def __init__( self, in_features: int, out_features: int, bias=True, device=None, dtype=None, groupsize: int = 128, inner_k_tiles: int = 8, padding: bool = True, ) -> None: super().__init__() self.padding = padding if padding: from model import find_multiple self.origin_in_features = in_features in_features = find_multiple(in_features, 1024) self.in_features = in_features self.out_features = out_features assert not bias, "require bias=False" self.groupsize = groupsize self.inner_k_tiles = inner_k_tiles assert out_features % 8 == 0, "require out_features % 8 == 0" assert in_features % (inner_k_tiles * 16) == 0, "require in_features % (innerKTiles * 16) == 0" self.register_buffer( "weight", torch.empty((out_features // 8, in_features // (inner_k_tiles * 16), 32, inner_k_tiles // 2), dtype=torch.int32) ) self.register_buffer( "scales_and_zeros", torch.empty((in_features // groupsize, out_features, 2), dtype=torch.bfloat16) ) def forward(self, input: torch.Tensor) -> torch.Tensor: input = input.to(torch.bfloat16) if self.padding: import torch.nn.functional as F input = F.pad(input, pad=(0, self.in_features - self.origin_in_features)) return linear_forward_int4( input, self.weight, self.scales_and_zeros, self.out_features, self.groupsize ) def quantize( checkpoint_path: Path = Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), mode: str = 'int8', # following arguments only available when setting int4 quantization. groupsize: int = 128, # following arguments only used for GPTQ calibration_tasks: list = ["hellaswag"], calibration_limit: int = 1000, calibration_seq_length: int = 100, pad_calibration_inputs: bool = False, percdamp: float = .01, blocksize: int = 128, label: str = '', ) -> None: assert checkpoint_path.is_file(), checkpoint_path device = 'cpu' precision = torch.bfloat16 print("Loading model ...") t0 = time.time() with torch.device('meta'): model = Transformer.from_name(checkpoint_path.parent.name) checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True) model.load_state_dict(checkpoint, assign=True) model = model.to(dtype=precision, device=device) if mode == 'int8': print("Quantizing model weights for int8 weight-only symmetric per-channel quantization") quant_handler = WeightOnlyInt8QuantHandler(model) quantized_state_dict = quant_handler.create_quantized_state_dict() dir_name = checkpoint_path.parent base_name = checkpoint_path.name new_base_name = base_name.replace('.pth', f'{label}int8.pth') elif mode == 'int4': print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization") quant_handler = WeightOnlyInt4QuantHandler(model, groupsize) quantized_state_dict = quant_handler.create_quantized_state_dict() dir_name = checkpoint_path.parent base_name = checkpoint_path.name new_base_name = base_name.replace('.pth', f"{label}int4.g{groupsize}.pth") elif mode == 'int4-gptq': print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization using GPTQ...") quant_handler = WeightOnlyInt4GPTQQuantHandler(model, groupsize) tokenizer_path = checkpoint_path.parent / "tokenizer.model" assert tokenizer_path.is_file(), str(tokenizer_path) tokenizer = get_tokenizer(tokenizer_path, checkpoint_path) quantized_state_dict = quant_handler.create_quantized_state_dict( tokenizer, blocksize, percdamp, groupsize, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs ) dir_name = checkpoint_path.parent base_name = checkpoint_path.name new_base_name = base_name.replace('.pth', f"{label}int4-gptq.g{groupsize}.pth") else: raise ValueError(f"Invalid quantization mode {mode} needs to be one of [int8, int4, int4-gpptq]") quantize_path = dir_name / new_base_name print(f"Writing quantized weights to {quantize_path}") quantize_path.unlink(missing_ok=True) # remove existing file if one already there torch.save(quantized_state_dict, quantize_path) print(f"Quantization complete took {time.time() - t0:.02f} seconds") return if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Quantize a model.') parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Path to the model checkpoint to be quantized.') parser.add_argument('--mode', '-q', type=str, default='int8', choices=['int8', 'int4', 'int4-gptq'], help='type of quantization to perform') parser.add_argument('--groupsize', type=int, default=32, help='Group size for int4 quantization.') parser.add_argument('--calibration_tasks', type=str, nargs='+', default=['wikitext'], help='tasks to do gptq calibration on, if doing gptq') parser.add_argument('--calibration_limit', type=int, default=1000, help='number of samples to use for gptq calibration') parser.add_argument('--calibration_seq_length', type=int, default=100, help='length of sequences to use for gptq calibration') parser.add_argument('--pad_calibration_inputs', type=bool, default=False, help='pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower') parser.add_argument('--percdamp', type=float, default=.01, help='gptq percentage dampening') parser.add_argument('--blocksize', type=int, default=128, help='blocksize for gptq') parser.add_argument('--label', type=str, default='_', help='label to add to output filename') args = parser.parse_args() quantize(args.checkpoint_path, args.mode, args.groupsize, args.calibration_tasks, args.calibration_limit, args.calibration_seq_length, args.pad_calibration_inputs, args.percdamp, args.blocksize, args.label)