from typing import Tuple import torch.nn as nn from torch.nn import functional as F from modules.commons import sequence_mask class InterpolateRegulator(nn.Module): def __init__( self, channels: int, sampling_ratios: Tuple, is_discrete: bool = False, codebook_size: int = 1024, # for discrete only out_channels: int = None, groups: int = 1, ): super().__init__() self.sampling_ratios = sampling_ratios out_channels = out_channels or channels model = nn.ModuleList([]) if len(sampling_ratios) > 0: for _ in sampling_ratios: module = nn.Conv1d(channels, channels, 3, 1, 1) norm = nn.GroupNorm(groups, channels) act = nn.Mish() model.extend([module, norm, act]) model.append( nn.Conv1d(channels, out_channels, 1, 1) ) self.model = nn.Sequential(*model) self.embedding = nn.Embedding(codebook_size, channels) self.is_discrete = is_discrete def forward(self, x, ylens=None): if self.is_discrete: x = self.embedding(x) # x in (B, T, D) mask = sequence_mask(ylens).unsqueeze(-1) x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') out = self.model(x).transpose(1, 2).contiguous() olens = ylens return out * mask, olens