# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import itertools import sys import time from pathlib import Path from typing import Optional, Tuple import torch import torch._dynamo.config import torch._inductor.config def device_sync(device): if "cuda" in device: torch.cuda.synchronize(device) elif ("cpu" in device) or ("mps" in device): pass else: print(f"device={device} is not yet suppported") torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future default_device = 'cuda' if torch.cuda.is_available() else 'cpu' # support running without installing as a package wd = Path(__file__).parent.parent.resolve() sys.path.append(str(wd)) from model import Transformer from tokenizer import get_tokenizer def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization q = torch.empty_like(probs_sort).exponential_(1) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None): logits = logits / max(temperature, 1e-5) if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) pivot = v.select(-1, -1).unsqueeze(-1) logits = torch.where(logits < pivot, -float("Inf"), logits) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None): probs = logits_to_probs(logits[0, -1], temperature, top_k) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor: # input_pos: [B, S] logits = model(x, input_pos) return sample(logits, **sampling_kwargs)[0] def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]: # input_pos: [B, 1] assert input_pos.shape[-1] == 1 logits = model(x, input_pos) return sample(logits, **sampling_kwargs) def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs): new_tokens, new_probs = [], [] for i in range(num_new_tokens): with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here next_token, next_prob = decode_one_token( model, cur_token, input_pos, **sampling_kwargs ) input_pos += 1 new_tokens.append(next_token.clone()) callback(new_tokens[-1]) new_probs.append(next_prob.clone()) cur_token = next_token.view(1, -1) return new_tokens, new_probs def model_forward(model, x, input_pos): return model(x, input_pos) def speculative_decode( model: Transformer, draft_model: Transformer, cur_token: torch.Tensor, input_pos: int, speculate_k: int, **sampling_kwargs ) -> torch.Tensor: # draft model inference sequentially device = cur_token.device orig_input_pos = torch.tensor([input_pos], dtype=torch.int64, device=cur_token.device) draft_tokens, draft_probs = decode_n_tokens(draft_model, cur_token.view(1, -1), orig_input_pos.clone(), speculate_k, **sampling_kwargs) draft_tokens = torch.cat(draft_tokens) # parallel inference on target model using draft tokens target_logits = model_forward( model, torch.cat([cur_token.view(1), draft_tokens]).view(1, -1), torch.arange(input_pos, input_pos + speculate_k + 1, device=cur_token.device) ) target_probs = logits_to_probs(target_logits[0], **sampling_kwargs) draft_probs = torch.stack(draft_probs) # q: target prob, p: draft prob # q >= p: always accept draft token # q < p: q/p prob to accept draft token p = draft_probs[torch.arange(0, speculate_k, device=device), draft_tokens] q = target_probs[torch.arange(0, speculate_k, device=device), draft_tokens] accept_draft_prob = torch.minimum(torch.ones(()), q[:speculate_k]/ p) rejected_locations = (torch.rand_like(accept_draft_prob) > accept_draft_prob).nonzero() if rejected_locations.shape[0] == 0: # All draft tokens have been accepted accept_length = speculate_k + 1 last_token = multinomial_sample_one_no_sync(target_probs[-1]) # fill last token into draft model model_forward( draft_model, draft_tokens[-1].view(1, -1), orig_input_pos + speculate_k, ) return torch.cat([draft_tokens, last_token]) else: accept_length = rejected_locations[0].item() p = draft_probs[accept_length] q = target_probs[accept_length] new = q - p new = torch.where(new > 0, new, 0.0) new = new / new.sum() next_token = multinomial_sample_one_no_sync(new) return torch.cat([draft_tokens[:accept_length], next_token]) @torch.no_grad() def generate( model: Transformer, prompt: torch.Tensor, max_new_tokens: int, *, interactive: bool, draft_model: Transformer, speculate_k: Optional[int] = 8, callback = lambda x: x, **sampling_kwargs ) -> torch.Tensor: """ Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. """ is_speculative = draft_model is not None # create an empty tensor of the expected final shape and fill in the current tokens T = prompt.size(0) T_new = T + max_new_tokens if interactive: max_seq_length = 350 else: max_seq_length = min(T_new, model.config.block_size) device, dtype = prompt.device, prompt.dtype max_seq_length = max_seq_length + speculate_k + 1 if is_speculative else max_seq_length with torch.device(device): model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length) if is_speculative and draft_model is not model: draft_model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length) # create an empty tensor of the expected final shape and fill in the current tokens empty = torch.empty(T_new, dtype=dtype, device=device) empty[:T] = prompt seq = empty input_pos = torch.arange(0, T, device=device) next_token = prefill(model, prompt.view(1, -1), input_pos, **sampling_kwargs).clone() if is_speculative: prefill(draft_model, prompt.view(1, -1), input_pos, **sampling_kwargs) seq[T] = next_token input_pos = torch.tensor([T], device=device, dtype=torch.int) accept_counts = [0] * (speculate_k + 1) if is_speculative: input_pos = input_pos.item() # for speculative decoding easier to keep on host while input_pos < T_new - 1: cur_token = next_token.view(()) next_tokens = speculative_decode( model, draft_model, cur_token, input_pos, speculate_k, **sampling_kwargs ) accept_counts[len(next_tokens) - 1] += 1 num_added = min(T_new - input_pos - 1, len(next_tokens)) seq[input_pos + 1 : input_pos + num_added + 1] = next_tokens[: num_added] for i in next_tokens[: num_added,]: callback(i) input_pos = input_pos + num_added next_token = next_tokens[-1] else: generated_tokens, _ = decode_n_tokens(model, next_token.view(1, -1), input_pos, max_new_tokens - 1, callback=callback, **sampling_kwargs) seq[T + 1:] = torch.cat(generated_tokens) generate_stats = { 'accept_counts': accept_counts } return seq, generate_stats def encode_tokens(tokenizer, string, bos=True, device=default_device): tokens = tokenizer.encode(string) if bos: tokens = [tokenizer.bos_id()] + tokens return torch.tensor(tokens, dtype=torch.int, device=device) def _load_model(checkpoint_path, device, precision, use_tp): use_cuda = 'cuda' in device with torch.device('meta'): model = Transformer.from_name(checkpoint_path.parent.name) if "int8" in str(checkpoint_path): print("Using int8 weight-only quantization!") from quantize import WeightOnlyInt8QuantHandler simple_quantizer = WeightOnlyInt8QuantHandler(model) model = simple_quantizer.convert_for_runtime() if "int4" in str(checkpoint_path): print("Using int4 weight-only quantization!") path_comps = checkpoint_path.name.split(".") groupsize = int(path_comps[-2][1:]) from quantize import WeightOnlyInt4QuantHandler simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize) model = simple_quantizer.convert_for_runtime() checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True) if "model" in checkpoint and "stories" in str(checkpoint_path): checkpoint = checkpoint["model"] model.load_state_dict(checkpoint, assign=True) if use_tp: from tp import apply_tp print("Applying tensor parallel to model ...") apply_tp(model) model = model.to(device=device, dtype=precision) return model.eval() def _get_model_size(model): model_size = 0 for name, child in model.named_children(): if not isinstance(child, torch.nn.Embedding): model_size += sum( [ p.numel() * p.dtype.itemsize for p in itertools.chain(child.parameters(), child.buffers()) ] ) return model_size B_INST, E_INST = "[INST]", "[/INST]" def main( prompt: str = "Hello, my name is", interactive: bool = False, num_samples: int = 5, max_new_tokens: int = 100, top_k: int = 200, temperature: float = 0.8, checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), compile: bool = True, compile_prefill: bool = False, profile: Optional[Path] = None, draft_checkpoint_path: Optional[Path] = None, speculate_k: int = 5, device=default_device, ) -> None: """Generates text samples based on a pre-trained Transformer model and tokenizer. """ assert checkpoint_path.is_file(), checkpoint_path tokenizer_path = checkpoint_path.parent / "tokenizer.model" assert tokenizer_path.is_file(), str(tokenizer_path) global print from tp import maybe_init_dist rank = maybe_init_dist() use_tp = rank is not None if use_tp: if rank != 0: # only print on rank 0 print = lambda *args, **kwargs: None print(f"Using device={device}") precision = torch.bfloat16 is_speculative = draft_checkpoint_path is not None is_chat = "chat" in str(checkpoint_path) print("Loading model ...") t0 = time.time() model = _load_model(checkpoint_path, device, precision, use_tp) if is_speculative: draft_model = _load_model(draft_checkpoint_path, device, precision, use_tp) else: draft_model = None device_sync(device=device) # MKG print(f"Time to load model: {time.time() - t0:.02f} seconds") tokenizer = get_tokenizer(tokenizer_path, checkpoint_path) encoded = encode_tokens(tokenizer, prompt, bos=True, device=device) prompt_length = encoded.size(0) torch.manual_seed(1234) model_size = _get_model_size(model) if compile: if is_speculative and use_tp: # and ("cuda" in device): torch._inductor.config.triton.cudagraph_trees = False # Bug with cudagraph trees in this case if is_speculative: global model_forward, logits_to_prob model_forward = torch.compile(model_forward, mode="reduce-overhead", fullgraph=True) global decode_one_token, prefill decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True) # Uncomment to squeeze more perf out of prefill if compile_prefill: prefill = torch.compile(prefill, fullgraph=True, dynamic=True) aggregate_metrics = { 'tokens_per_sec': [], 'accept_counts': [], } start = -1 if compile else 0 for i in range(start, num_samples): device_sync(device=device) # MKG if i >= 0 and interactive: prompt = input("What is your prompt? ") if is_chat: prompt = f"{B_INST} {prompt.strip()} {E_INST}" encoded = encode_tokens(tokenizer, prompt, bos=True, device=device) if interactive and i >= 0: buffer = [] period_id = tokenizer.encode('.')[0] done_generating = False def callback(x): nonlocal done_generating if done_generating: return buffer.append(tokenizer.decode([period_id] + x.tolist())[1:]) if x.item() == tokenizer.eos_id(): done_generating = True if len(buffer) == 4 or done_generating: print(''.join(buffer), end='', flush=True) buffer.clear() # print(, end='', flush=True) else: callback = lambda x : x t0 = time.perf_counter() import contextlib if (i != num_samples - 1 or not profile) or (use_tp and rank != 0): prof = contextlib.nullcontext() else: torch.profiler._utils._init_for_cuda_graphs() prof = torch.profiler.profile() with prof: y, metrics = generate( model, encoded, max_new_tokens, draft_model=draft_model, speculate_k=speculate_k, interactive=interactive, callback=callback, temperature=temperature, top_k=top_k, ) aggregate_metrics['accept_counts'].append(metrics['accept_counts']) if i == -1: print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") continue if hasattr(prof, "export_chrome_trace"): if use_tp: prof.export_chrome_trace(f"{profile}_rank_{rank}.json") else: prof.export_chrome_trace(f"{profile}.json") device_sync(device=device) # MKG t = time.perf_counter() - t0 if not interactive: print(tokenizer.decode(y.tolist())) else: print() tokens_generated = y.size(0) - prompt_length tokens_sec = tokens_generated / t aggregate_metrics['tokens_per_sec'].append(tokens_sec) print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec") print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s") print("==========") if is_speculative: counts_aggregated = [sum(i) for i in zip(*aggregate_metrics['accept_counts'])] acceptance_probs = [i/sum(counts_aggregated) for i in counts_aggregated] print(f"Acceptance probs: {acceptance_probs}") print(f"Mean Accepted: {sum([idx * i for idx, i in enumerate(counts_aggregated)])/sum(counts_aggregated)}") print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}") print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB") if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Your CLI description.') parser.add_argument('--prompt', type=str, default="Hello, my name is", help='Input prompt.') parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode') parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.') parser.add_argument('--max_new_tokens', type=int, default=200, help='Maximum number of new tokens.') parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.') parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.') parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), help='Model checkpoint path.') parser.add_argument('--compile', action='store_true', help='Whether to compile the model.') parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)') parser.add_argument('--profile', type=Path, default=None, help='Profile path.') parser.add_argument('--speculate_k', type=int, default=5, help='Speculative execution depth.') parser.add_argument('--draft_checkpoint_path', type=Path, default=None, help='Draft checkpoint path.') parser.add_argument('--device', type=str, default=default_device, help='Device to use') args = parser.parse_args() main( args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.top_k, args.temperature, args.checkpoint_path, args.compile, args.compile_prefill, args.profile, args.draft_checkpoint_path, args.speculate_k, args.device )