# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) class AdaptiveLayerNorm(nn.Module): r"""Adaptive Layer Normalization""" def __init__(self, d_model, norm) -> None: super(AdaptiveLayerNorm, self).__init__() self.project_layer = nn.Linear(d_model, 2 * d_model) self.norm = norm self.d_model = d_model self.eps = self.norm.eps def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: if embedding is None: return self.norm(input) weight, bias = torch.split( self.project_layer(embedding), split_size_or_sections=self.d_model, dim=-1, ) return weight * self.norm(input) + bias @dataclass class ModelArgs: block_size: int = 2048 vocab_size: int = 32000 n_layer: int = 32 n_head: int = 32 dim: int = 4096 intermediate_size: int = None n_local_heads: int = -1 head_dim: int = 64 rope_base: float = 10000 norm_eps: float = 1e-5 has_cross_attention: bool = False context_dim: int = 0 uvit_skip_connection: bool = False def __post_init__(self): if self.n_local_heads == -1: self.n_local_heads = self.n_head if self.intermediate_size is None: hidden_dim = 4 * self.dim n_hidden = int(2 * hidden_dim / 3) self.intermediate_size = find_multiple(n_hidden, 256) # self.head_dim = self.dim // self.n_head @classmethod def from_name(cls, name: str): if name in transformer_configs: return cls(**transformer_configs[name]) # fuzzy search config = [config for config in transformer_configs if config.lower() in str(name).lower()] # We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match, # take longer name (as it have more symbols matched) if len(config) > 1: config.sort(key=len, reverse=True) assert len(config[0]) != len(config[1]), name # make sure only one 'best' match return cls(**transformer_configs[config[0]]) transformer_configs = { "CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000), "7B": dict(n_layer=32, n_head=32, dim=4096), "13B": dict(n_layer=40, n_head=40, dim=5120), "30B": dict(n_layer=60, n_head=52, dim=6656), "34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016, rope_base=1000000), # CodeLlama-34B-Python-hf "70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672), "Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000), "stories15M": dict(n_layer=6, n_head=6, dim=288), "stories110M": dict(n_layer=12, n_head=12, dim=768), "llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=128256, rope_base=500000), "llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672, vocab_size=128256, rope_base=500000), } class KVCache(nn.Module): def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16): super().__init__() cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] k_out = self.k_cache v_out = self.v_cache k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val return k_out, v_out class Transformer(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) self.freqs_cis: Optional[Tensor] = None self.mask_cache: Optional[Tensor] = None self.max_batch_size = -1 self.max_seq_length = -1 def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True): if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: return head_dim = self.config.dim // self.config.n_head max_seq_length = find_multiple(max_seq_length, 8) self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size dtype = self.norm.project_layer.weight.dtype device = self.norm.project_layer.weight.device if not self.training and use_kv_cache: for b in self.layers: b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device) self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim, self.config.rope_base, dtype).to(device) self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device) self.use_kv_cache = use_kv_cache self.uvit_skip_connection = self.config.uvit_skip_connection if self.uvit_skip_connection: self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2] self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2] else: self.layers_emit_skip = [] self.layers_receive_skip = [] def forward(self, x: Tensor, c: Tensor, input_pos: Optional[Tensor] = None, mask: Optional[Tensor] = None, context: Optional[Tensor] = None, context_input_pos: Optional[Tensor] = None, cross_attention_mask: Optional[Tensor] = None, ) -> Tensor: assert self.freqs_cis is not None, "Caches must be initialized first" if mask is None: # in case of non-causal model if not self.training and self.use_kv_cache: mask = self.causal_mask[None, None, input_pos] else: mask = self.causal_mask[None, None, input_pos] mask = mask[..., input_pos] freqs_cis = self.freqs_cis[input_pos] if context is not None: context_freqs_cis = self.freqs_cis[context_input_pos] else: context_freqs_cis = None skip_in_x_list = [] for i, layer in enumerate(self.layers): if self.uvit_skip_connection and i in self.layers_receive_skip: skip_in_x = skip_in_x_list.pop(-1) else: skip_in_x = None x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x) if self.uvit_skip_connection and i in self.layers_emit_skip: skip_in_x_list.append(x) x = self.norm(x, c) return x @classmethod def from_name(cls, name: str): return cls(ModelArgs.from_name(name)) class TransformerBlock(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.attention = Attention(config) self.feed_forward = FeedForward(config) self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) if config.has_cross_attention: self.has_cross_attention = True self.cross_attention = Attention(config, is_cross_attention=True) self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) else: self.has_cross_attention = False if config.uvit_skip_connection: self.skip_in_linear = nn.Linear(config.dim * 2, config.dim) self.uvit_skip_connection = True else: self.uvit_skip_connection = False def forward(self, x: Tensor, c: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor, context: Optional[Tensor] = None, context_freqs_cis: Optional[Tensor] = None, cross_attention_mask: Optional[Tensor] = None, skip_in_x: Optional[Tensor] = None, ) -> Tensor: if self.uvit_skip_connection and skip_in_x is not None: x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1)) h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos) if self.has_cross_attention: h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis) out = h + self.feed_forward(self.ffn_norm(h, c)) return out class Attention(nn.Module): def __init__(self, config: ModelArgs, is_cross_attention: bool = False): super().__init__() assert config.dim % config.n_head == 0 total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim # key, query, value projections for all heads, but in a batch if is_cross_attention: self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False) self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False) else: self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False) self.kv_cache = None self.n_head = config.n_head self.head_dim = config.head_dim self.n_local_heads = config.n_local_heads self.dim = config.dim # self._register_load_state_dict_pre_hook(self.load_hook) # def load_hook(self, state_dict, prefix, *args): # if prefix + "wq.weight" in state_dict: # wq = state_dict.pop(prefix + "wq.weight") # wk = state_dict.pop(prefix + "wk.weight") # wv = state_dict.pop(prefix + "wv.weight") # state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) def forward(self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None, context: Optional[Tensor] = None, context_freqs_cis: Optional[Tensor] = None, ) -> Tensor: bsz, seqlen, _ = x.shape kv_size = self.n_local_heads * self.head_dim if context is None: q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1) context_seqlen = seqlen else: q = self.wq(x) k, v = self.wkv(context).split([kv_size, kv_size], dim=-1) context_seqlen = context.shape[1] q = q.view(bsz, seqlen, self.n_head, self.head_dim) k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) q = apply_rotary_emb(q, freqs_cis) k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) if self.kv_cache is not None: k, v = self.kv_cache.update(input_pos, k, v) k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head) y = self.wo(y) return y class FeedForward(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) def forward(self, x: Tensor) -> Tensor: return self.w2(F.silu(self.w1(x)) * self.w3(x)) class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x: Tensor) -> Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight def precompute_freqs_cis( seq_len: int, n_elem: int, base: int = 10000, dtype: torch.dtype = torch.bfloat16 ) -> Tensor: freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) return cache.to(dtype=dtype) def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: xshaped = x.float().reshape(*x.shape[:-1], -1, 2) freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)