import gradio as gr import torch import torchaudio import librosa from modules.commons import build_model, load_checkpoint, recursive_munch import yaml from hf_utils import load_custom_model_from_hf import numpy as np from pydub import AudioSegment import spaces # Load model and configuration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml") config = yaml.safe_load(open(dit_config_path, 'r')) model_params = recursive_munch(config['model_params']) model = build_model(model_params, stage='DiT') hop_length = config['preprocess_params']['spect_params']['hop_length'] sr = config['preprocess_params']['sr'] # Load checkpoints model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False) for key in model: model[key].eval() model[key].to(device) model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) # Load additional modules from modules.campplus.DTDNN import CAMPPlus campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) campplus_model.eval() campplus_model.to(device) from modules.bigvgan import bigvgan bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False) # remove weight norm in the model and set to eval mode bigvgan_model.remove_weight_norm() bigvgan_model = bigvgan_model.eval().to(device) ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml') codec_config = yaml.safe_load(open(config_path)) codec_model_params = recursive_munch(codec_config['model_params']) codec_encoder = build_model(codec_model_params, stage="codec") ckpt_params = torch.load(ckpt_path, map_location="cpu") for key in codec_encoder: codec_encoder[key].load_state_dict(ckpt_params[key], strict=False) _ = [codec_encoder[key].eval() for key in codec_encoder] _ = [codec_encoder[key].to(device) for key in codec_encoder] # whisper from transformers import AutoFeatureExtractor, WhisperModel whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small" whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device) del whisper_model.decoder whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) # Generate mel spectrograms mel_fn_args = { "n_fft": config['preprocess_params']['spect_params']['n_fft'], "win_size": config['preprocess_params']['spect_params']['win_length'], "hop_size": config['preprocess_params']['spect_params']['hop_length'], "num_mels": config['preprocess_params']['spect_params']['n_mels'], "sampling_rate": sr, "fmin": 0, "fmax": None, "center": False } mel_fn_args_f0 = { "n_fft": config['preprocess_params']['spect_params']['n_fft'], "win_size": config['preprocess_params']['spect_params']['win_length'], "hop_size": config['preprocess_params']['spect_params']['hop_length'], "num_mels": config['preprocess_params']['spect_params']['n_mels'], "sampling_rate": sr, "fmin": 0, "fmax": None, "center": False } from modules.audio import mel_spectrogram to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0) # f0 conditioned model dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_facodec_small_wavenet_f0_bigvgan_pruned.pth", "config_dit_mel_seed_facodec_small_wavenet_f0.yml") config = yaml.safe_load(open(dit_config_path, 'r')) model_params = recursive_munch(config['model_params']) model_f0 = build_model(model_params, stage='DiT') hop_length = config['preprocess_params']['spect_params']['hop_length'] sr = config['preprocess_params']['sr'] # Load checkpoints model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False) for key in model_f0: model_f0[key].eval() model_f0[key].to(device) model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) # f0 extractor from modules.rmvpe import RMVPE model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) rmvpe = RMVPE(model_path, is_half=False, device=device) def adjust_f0_semitones(f0_sequence, n_semitones): factor = 2 ** (n_semitones / 12) return f0_sequence * factor def crossfade(chunk1, chunk2, overlap): fade_out = np.linspace(1, 0, overlap) fade_in = np.linspace(0, 1, overlap) chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out return chunk2 # streaming and chunk processing related params max_context_window = sr // hop_length * 30 overlap_frame_len = 64 overlap_wave_len = overlap_frame_len * hop_length bitrate = "320k" @spaces.GPU @torch.no_grad() @torch.inference_mode() def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift): inference_module = model if not f0_condition else model_f0 mel_fn = to_mel if not f0_condition else to_mel_f0 # Load audio source_audio = librosa.load(source, sr=sr)[0] ref_audio = librosa.load(target, sr=sr)[0] # Process audio source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device) ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device) # Resample ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) # Extract features if f0_condition: converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000) waves_input = converted_waves_24k.unsqueeze(1) max_wave_len_per_chunk = 24000 * 20 wave_input_chunks = [ waves_input[..., i:i + max_wave_len_per_chunk] for i in range(0, waves_input.size(-1), max_wave_len_per_chunk) ] S_alt_chunks = [] for i, chunk in enumerate(wave_input_chunks): z = codec_encoder.encoder(chunk) ( quantized, codes ) = codec_encoder.quantizer( z, chunk, ) S_alt = torch.cat([codes[1], codes[0]], dim=1) S_alt_chunks.append(S_alt) S_alt = torch.cat(S_alt_chunks, dim=-1) # S_ori should be extracted in the same way waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000) waves_input = waves_24k.unsqueeze(1) z = codec_encoder.encoder(waves_input) ( quantized, codes ) = codec_encoder.quantizer( z, waves_input, ) S_ori = torch.cat([codes[1], codes[0]], dim=1) else: converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) # if source audio less than 30 seconds, whisper can handle in one forward if converted_waves_16k.size(-1) <= 16000 * 30: alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=16000) alt_input_features = whisper_model._mask_input_features( alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device) alt_outputs = whisper_model.encoder( alt_input_features.to(whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_alt = alt_outputs.last_hidden_state.to(torch.float32) S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1] else: overlapping_time = 5 # 5 seconds S_alt_list = [] buffer = None traversed_time = 0 while traversed_time < converted_waves_16k.size(-1): if buffer is None: # first chunk chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30] else: chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1) alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=16000) alt_input_features = whisper_model._mask_input_features( alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device) alt_outputs = whisper_model.encoder( alt_input_features.to(whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_alt = alt_outputs.last_hidden_state.to(torch.float32) S_alt = S_alt[:, :chunk.size(-1) // 320 + 1] if traversed_time == 0: S_alt_list.append(S_alt) else: S_alt_list.append(S_alt[:, 50 * overlapping_time:]) buffer = chunk[:, -16000 * overlapping_time:] traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time S_alt = torch.cat(S_alt_list, dim=1) ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True) ori_input_features = whisper_model._mask_input_features( ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device) with torch.no_grad(): ori_outputs = whisper_model.encoder( ori_input_features.to(whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_ori = ori_outputs.last_hidden_state.to(torch.float32) S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1] mel = mel_fn(source_audio.to(device).float()) mel2 = mel_fn(ref_audio.to(device).float()) target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000) feat2 = feat2 - feat2.mean(dim=0, keepdim=True) style2 = campplus_model(feat2.unsqueeze(0)) if f0_condition: waves_16k = torchaudio.functional.resample(waves_24k, sr, 16000) converted_waves_16k = torchaudio.functional.resample(converted_waves_24k, sr, 16000) F0_ori = rmvpe.infer_from_audio(waves_16k[0], thred=0.03) F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03) F0_ori = torch.from_numpy(F0_ori).to(device)[None] F0_alt = torch.from_numpy(F0_alt).to(device)[None] voiced_F0_ori = F0_ori[F0_ori > 1] voiced_F0_alt = F0_alt[F0_alt > 1] log_f0_alt = torch.log(F0_alt + 1e-5) voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) median_log_f0_ori = torch.median(voiced_log_f0_ori) median_log_f0_alt = torch.median(voiced_log_f0_alt) # mean_log_f0_ori = torch.mean(voiced_log_f0_ori) # mean_log_f0_alt = torch.mean(voiced_log_f0_alt) # shift alt log f0 level to ori log f0 level shifted_log_f0_alt = log_f0_alt.clone() if auto_f0_adjust: shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori shifted_f0_alt = torch.exp(shifted_log_f0_alt) if pitch_shift != 0: shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) else: F0_ori = None F0_alt = None shifted_f0_alt = None # Length regulation cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt) prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori) max_source_window = max_context_window - mel2.size(2) # split source condition (cond) into chunks processed_frames = 0 generated_wave_chunks = [] # generate chunk by chunk and stream the output while processed_frames < cond.size(1): chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] is_last_chunk = processed_frames + max_source_window >= cond.size(1) cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) # Voice Conversion vc_target = inference_module.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate) vc_target = vc_target[:, :, mel2.size(-1):] vc_wave = bigvgan_model(vc_target)[0] if processed_frames == 0: if is_last_chunk: output_wave = vc_wave[0].cpu().numpy() generated_wave_chunks.append(output_wave) output_wave = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave.tobytes(), frame_rate=sr, sample_width=output_wave.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=bitrate).read() yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks)) break output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_target.size(2) - overlap_frame_len output_wave = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave.tobytes(), frame_rate=sr, sample_width=output_wave.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=bitrate).read() yield mp3_bytes, None elif is_last_chunk: output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) processed_frames += vc_target.size(2) - overlap_frame_len output_wave = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave.tobytes(), frame_rate=sr, sample_width=output_wave.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=bitrate).read() yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks)) break else: output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_target.size(2) - overlap_frame_len output_wave = (output_wave * 32768.0).astype(np.int16) mp3_bytes = AudioSegment( output_wave.tobytes(), frame_rate=sr, sample_width=output_wave.dtype.itemsize, channels=1 ).export(format="mp3", bitrate=bitrate).read() yield mp3_bytes, None if __name__ == "__main__": description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) " "for details and updates.
Note that any reference audio will be forcefully clipped to 25s if beyond this length.
" "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.
" "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)
" "请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。
若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。") inputs = [ gr.Audio(type="filepath", label="Source Audio / 源音频"), gr.Audio(type="filepath", label="Reference Audio / 参考音频"), gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"), gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"), gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"), gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True, info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"), gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"), ] examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0], ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, False, True, 0], ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav", "examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0], ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav", "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12], ] outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'), gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')] gr.Interface(fn=voice_conversion, description=description, inputs=inputs, outputs=outputs, title="Seed Voice Conversion", examples=examples, cache_examples=False, ).launch()