File size: 4,195 Bytes
f640140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import json
import numpy as np
import pandas as pd

import streamlit as st
import torch
import torch.nn.functional as F
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification

@st.cache(allow_output_mutation=True)
def init_model():
    tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
    model = DistilBertForSequenceClassification.from_pretrained('khizon/distilbert-unreliable-news-eng-4L', num_labels = 2)

    return tokenizer, model

def download_dataset():
    url = 'https://drive.google.com/drive/folders/11mRvsHAkggFEJvG4axH4mmWI6FHMQp7X?usp=sharing'
    data = 'data/nela_gt_2018_site_split'
    
    os.system(f'gdown --folder {url} -O {data}')

@st.cache(allow_output_mutation=True)
def jsonl_to_df(file_path):
    with open(file_path) as f:
        lines = f.read().splitlines()

    df_inter = pd.DataFrame(lines)
    df_inter.columns = ['json_element']

    df_inter['json_element'].apply(json.loads)

    return pd.json_normalize(df_inter['json_element'].apply(json.loads))

@st.cache
def load_test_df():
    file_path = os.path.join('data', 'nela_gt_2018_site_split', 'test.jsonl')
    test_df = jsonl_to_df(file_path)
    test_df = pd.get_dummies(test_df, columns = ['label'])
    return test_df

@st.cache(allow_output_mutation=True)
def predict(model, tokenizer, data):
  
    labels = data[['label_0', 'label_1']]
    labels = torch.tensor(labels, dtype=torch.float32)
    encoding = tokenizer.encode_plus(
                data['title'],
                ' [SEP] ' + data['content'],
                add_special_tokens=True,
                max_length = 512,
                return_token_type_ids = False,
                padding = 'max_length',
                truncation = 'only_second',
                return_attention_mask = True,
                return_tensors = 'pt'
            )

    output = model(**encoding)
    return correct_preds(output['logits'], labels)

@st.cache(allow_output_mutation=True)
def predict_new(model, tokenizer, title, content):
    encoding = tokenizer.encode_plus(
                title,
                ' [SEP] ' + content,
                add_special_tokens=True,
                max_length = 512,
                return_token_type_ids = False,
                padding = 'max_length',
                truncation = 'only_second',
                return_attention_mask = True,
                return_tensors = 'pt'
            )
    output = model(**encoding)
    preds = F.softmax(output['logits'], dim = 1)
    p_idx = torch.argmax(preds, dim = 1)
    return 'reliable' if p_idx > 0 else 'unreliable'

def correct_preds(preds, labels):
    preds = torch.nn.functional.softmax(preds, dim = 1)
    p_idx = torch.argmax(preds, dim=1)
    l_idx = torch.argmax(labels, dim=0)

    pred_label = 'reliable' if p_idx > 0 else 'unreliable'
    correct = True if (p_idx == l_idx).sum().item() > 0 else False
    return  pred_label, correct


if __name__ == '__main__':
    if not os.path.exists('data/nela_gt_2018_site_split/test.jsonl'):
        download_dataset()
    df = load_test_df()
    tokenizer, model = init_model()

    st.title("Unreliable News classifier")
    mode = st.radio(
        '', ('Test article', 'Input own article')
    )
    if mode == 'Test article':
        if st.button('Get random article'):
            idx = np.random.randint(0, len(df))
            sample = df.iloc[idx]
            
            prediction, correct = predict(model, tokenizer, sample)
            label = 'reliable' if sample['label_1'] > sample['label_0'] else 'unreliable'
            st.header(sample['title'])
            if correct:
                st.success(f'Prediction: {prediction}')
            else:
                st.error(f'Prediction: {prediction}')
            st.caption(f'Source: {sample["source"]} ({label})')
            st.markdown(sample['content'])
    else:
        title = st.text_input('Article title', 'Test title')
        content = st.text_area('Article content', 'Lorem ipsum')
        if st.button('Submit'):
            pred = predict_new(model, tokenizer, title, content)
            st.markdown(f'Prediction: {pred}')
            # st.success('success')