khoatran94 commited on
Commit
6858abc
·
1 Parent(s): 5e67c6e
Files changed (1) hide show
  1. app.py +16 -16
app.py CHANGED
@@ -23,7 +23,7 @@ from dotenv import load_dotenv
23
 
24
  zero = torch.Tensor([0]).cuda()
25
 
26
-
27
  def read_pdf(file_path):
28
  output = ''
29
  doc = pymupdf.open(file_path)
@@ -49,34 +49,34 @@ def read_pdf(file_path):
49
 
50
  # Function to query Hugging Face endpoint
51
  #@spaces.GPU
52
- def query_huggingface(text):
53
- print(zero.device)
54
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
55
- model = AutoModelForCausalLM.from_pretrained(
56
- "google/gemma-2-9b-it",
57
- device_map="auto",
58
- torch_dtype=torch.bfloat16,
59
- )
60
- input_ids = tokenizer(text, return_tensors="pt").to("cuda")
61
- outputs = model.generate(**input_ids, max_new_tokens=32)
62
- return tokenizer.decode(outputs[0])
63
 
64
  # Gradio Interface for PDF Processing
65
  def process_file(file, query):
66
  pdf_output = read_pdf(file.name)
67
- huggingface_output = query_huggingface(query)
68
- return pdf_output, huggingface_output
69
 
70
  # Create Gradio App
71
  interface = gr.Interface(
72
  fn=process_file,
73
  inputs=[
74
  gr.File(label="Upload a PDF file"),
75
- gr.Textbox(label="Enter your query for Hugging Face"),
76
  ],
77
  outputs=[
78
  gr.Textbox(label="PDF Content"),
79
- gr.Textbox(label="Hugging Face Output"),
80
  ],
81
  title="PDF Processor with Hugging Face Query"
82
  )
 
23
 
24
  zero = torch.Tensor([0]).cuda()
25
 
26
+ @spaces.GPU
27
  def read_pdf(file_path):
28
  output = ''
29
  doc = pymupdf.open(file_path)
 
49
 
50
  # Function to query Hugging Face endpoint
51
  #@spaces.GPU
52
+ # def query_huggingface(text):
53
+ # print(zero.device)
54
+ # tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
55
+ # model = AutoModelForCausalLM.from_pretrained(
56
+ # "google/gemma-2-9b-it",
57
+ # device_map="auto",
58
+ # torch_dtype=torch.bfloat16,
59
+ # )
60
+ # input_ids = tokenizer(text, return_tensors="pt").to("cuda")
61
+ # outputs = model.generate(**input_ids, max_new_tokens=32)
62
+ # return tokenizer.decode(outputs[0])
63
 
64
  # Gradio Interface for PDF Processing
65
  def process_file(file, query):
66
  pdf_output = read_pdf(file.name)
67
+ #huggingface_output = query_huggingface(query)
68
+ return pdf_output#, huggingface_output
69
 
70
  # Create Gradio App
71
  interface = gr.Interface(
72
  fn=process_file,
73
  inputs=[
74
  gr.File(label="Upload a PDF file"),
75
+ #gr.Textbox(label="Enter your query for Hugging Face"),
76
  ],
77
  outputs=[
78
  gr.Textbox(label="PDF Content"),
79
+ #gr.Textbox(label="Hugging Face Output"),
80
  ],
81
  title="PDF Processor with Hugging Face Query"
82
  )