khoatran94 commited on
Commit
7d26fee
·
1 Parent(s): a4f64ec

test cv extraction

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -25,7 +25,6 @@ import huggingface_hub
25
  #zero = torch.Tensor([0]).cuda()
26
  load_dotenv()
27
  api_token = os.getenv("HF_TOKEN")
28
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
29
 
30
  #@spaces.GPU
31
  def read_pdf(file_path):
@@ -49,15 +48,16 @@ def read_pdf(file_path):
49
  img = Image.open(path)
50
  pix = None
51
  output += pytesseract.image_to_string(img, lang='vie') + '\n'
 
52
  return output
53
 
54
 
55
  @spaces.GPU(duration=30)
56
  def LLM_Inference(cv_text):
57
  huggingface_hub.login(token=api_token)
58
- device = torch.device('cuda')
59
- tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-2b-it')
60
- model = AutoModelForCausalLM.from_pretrained('google/gemma-2-2b-it').to(device)
61
 
62
  text = f'''
63
  You are an AI designed to extract structured information from unstructured text. Your task is to analyze the content of a candidate's CV and extract the following details:
 
25
  #zero = torch.Tensor([0]).cuda()
26
  load_dotenv()
27
  api_token = os.getenv("HF_TOKEN")
 
28
 
29
  #@spaces.GPU
30
  def read_pdf(file_path):
 
48
  img = Image.open(path)
49
  pix = None
50
  output += pytesseract.image_to_string(img, lang='vie') + '\n'
51
+ os.remove(path)
52
  return output
53
 
54
 
55
  @spaces.GPU(duration=30)
56
  def LLM_Inference(cv_text):
57
  huggingface_hub.login(token=api_token)
58
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
59
+ tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-9b-it')
60
+ model = AutoModelForCausalLM.from_pretrained('google/gemma-2-9b-it').to(device)
61
 
62
  text = f'''
63
  You are an AI designed to extract structured information from unstructured text. Your task is to analyze the content of a candidate's CV and extract the following details: