Spaces:
Sleeping
Sleeping
File size: 2,368 Bytes
0d375ed 822daa6 0d375ed 822daa6 0d375ed 822daa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import torch
import sentencepiece
from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
import os
import spacy
import spacy_transformers
import zipfile
from collections import defaultdict
class Models():
def __init__(self) -> None:
self.load_trained_models()
def load_trained_models(self):
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner-with-dates",use_fast=False)
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner-with-dates")
self.ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
current_directory = os.path.dirname(os.path.realpath(__file__))
custom_ner_path = os.path.join(current_directory, 'spacy_model_v2/output/model-best')
if not os.path.exists(custom_ner_path):
with zipfile.ZipFile(r"models\prototype\spacy_model_v2.zip", 'r') as zip_ref:
# Extract all contents in the current working directory
zip_ref.extractall()
self.custom_ner = spacy.load(custom_ner_path)
def extract_ner(self, text):
entities = self.ner(text)
keys = ['DATE', 'ORG', 'LOC']
sort_dict = defaultdict(list)
for entity in entities:
if entity['score'] > 0.75:
sort_dict[entity['entity_group']].append(entity['word'])
filtered_dict = {key: value for key, value in sort_dict.items() if key in keys}
filtered_dict = defaultdict(list, filtered_dict)
return filtered_dict['DATE'], filtered_dict['ORG'], filtered_dict['LOC']
def get_ner(self, text, recover_text):
dates, companies, locations = self.extract_ner(text)
alternative_dates, alternative_companies, alternative_locations = self.extract_ner(recover_text)
if dates == [] :
dates = alternative_dates
if companies == []:
companies = alternative_companies
if locations == []:
locations = alternative_locations
return dates, companies, locations
def get_custom_ner(self, text):
doc = self.custom_ner(text)
entities = list(doc.ents)
sort_dict = defaultdict(list)
for entity in entities:
sort_dict[entity.label_].append(entity.text)
return sort_dict
|