File size: 12,056 Bytes
1092afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
start = time.time()

pipe = pipes[model_id]["model"]

if "device" in pipes[model_id]:
    try:
        pipe.to(pipes[model_id]["device"])
    except:
        pipe.device = torch.device(pipes[model_id]["device"])
        pipe.model.to(pipes[model_id]["device"])

result = None
try:
    # text to video
    if model_id == "damo-vilab/text-to-video-ms-1.7b":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        # pipe.enable_model_cpu_offload()
        prompt = data["text"]
        video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames
        file_name = str(uuid.uuid4())[:4]
        video_path = export_to_video(video_frames, f"public/videos/{file_name}.mp4")
        
        new_file_name = str(uuid.uuid4())[:4]
        os.system(f"ffmpeg -i {video_path} -vcodec libx264 public/videos/{new_file_name}.mp4")

        if os.path.exists(f"public/videos/{new_file_name}.mp4"): 
            result = {"path": f"/videos/{new_file_name}.mp4"}
        else:
            result = {"path": f"/videos/{file_name}.mp4"}

    # controlnet
    if model_id.startswith("lllyasviel/sd-controlnet-"):
        pipe.controlnet.to('cpu')
        pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"])
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        control_image = load_image(data["img_url"])
        # generator = torch.manual_seed(66)
        out_image: Image = pipe(data["text"], num_inference_steps=20, image=control_image).images[0]
        file_name = str(uuid.uuid4())[:4]
        out_image.save(f"public/images/{file_name}.png")
        result = {"path": f"/images/{file_name}.png"}

    if model_id.endswith("-control"):
        image = load_image(data["img_url"])
        if "scribble" in model_id:
            control = pipe(image, scribble = True)
        elif "canny" in model_id:
            control = pipe(image, low_threshold=100, high_threshold=200)
        else:
            control = pipe(image)
        file_name = str(uuid.uuid4())[:4]
        control.save(f"public/images/{file_name}.png")
        result = {"path": f"/images/{file_name}.png"}

    # image to image
    if model_id == "lambdalabs/sd-image-variations-diffusers":
        im = load_image(data["img_url"])
        file_name = str(uuid.uuid4())[:4]
        with open(f"public/images/{file_name}.png", "wb") as f:
            f.write(data)
        tform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Resize(
                (224, 224),
                interpolation=transforms.InterpolationMode.BICUBIC,
                antialias=False,
                ),
            transforms.Normalize(
            [0.48145466, 0.4578275, 0.40821073],
            [0.26862954, 0.26130258, 0.27577711]),
        ])
        inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0)
        out = pipe(inp, guidance_scale=3)
        out["images"][0].save(f"public/images/{file_name}.jpg")
        result = {"path": f"/images/{file_name}.jpg"}

    # image to text
    if model_id == "Salesforce/blip-image-captioning-large":
        raw_image = load_image(data["img_url"]).convert('RGB')
        text = data["text"]
        inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"])
        out = pipe.generate(**inputs)
        caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True)
        result = {"generated text": caption}
    if model_id == "ydshieh/vit-gpt2-coco-en":
        img_url = data["img_url"]
        generated_text = pipe(img_url)[0]['generated_text']
        result = {"generated text": generated_text}
    if model_id == "nlpconnect/vit-gpt2-image-captioning":
        image = load_image(data["img_url"]).convert("RGB")
        pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values
        pixel_values = pixel_values.to(pipes[model_id]["device"])
        generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1})
        generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0]
        result = {"generated text": generated_text}
    # image to text: OCR
    if model_id == "microsoft/trocr-base-printed" or  model_id == "microsoft/trocr-base-handwritten":
        image = load_image(data["img_url"]).convert("RGB")
        pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values
        pixel_values = pixel_values.to(pipes[model_id]["device"])
        generated_ids = pipe.generate(pixel_values)
        generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0]
        result = {"generated text": generated_text}

    # text to image
    if model_id == "runwayml/stable-diffusion-v1-5":
        file_name = str(uuid.uuid4())[:4]
        text = data["text"]
        out = pipe(prompt=text)
        out["images"][0].save(f"public/images/{file_name}.jpg")
        result = {"path": f"/images/{file_name}.jpg"}

    # object detection
    if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101":
        img_url = data["img_url"]
        open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"]
        result = pipe(img_url, candidate_labels=open_types)
    
    # VQA
    if model_id == "dandelin/vilt-b32-finetuned-vqa":
        question = data["text"]
        img_url = data["img_url"]
        result = pipe(question=question, image=img_url)
    
    #DQA
    if model_id == "impira/layoutlm-document-qa":
        question = data["text"]
        img_url = data["img_url"]
        result = pipe(img_url, question)

    # depth-estimation
    if model_id == "Intel/dpt-large":
        output = pipe(data["img_url"])
        image = output['depth']
        name = str(uuid.uuid4())[:4]
        image.save(f"public/images/{name}.jpg")
        result = {"path": f"/images/{name}.jpg"}

    if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large":
        image = load_image(data["img_url"])
        inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt")
        with torch.no_grad():
            outputs = pipe(**inputs)
            predicted_depth = outputs.predicted_depth
        prediction = torch.nn.functional.interpolate(
            predicted_depth.unsqueeze(1),
            size=image.size[::-1],
            mode="bicubic",
            align_corners=False,
        )
        output = prediction.squeeze().cpu().numpy()
        formatted = (output * 255 / np.max(output)).astype("uint8")
        image = Image.fromarray(formatted)
        name = str(uuid.uuid4())[:4]
        image.save(f"public/images/{name}.jpg")
        result = {"path": f"/images/{name}.jpg"}

    # TTS
    if model_id == "espnet/kan-bayashi_ljspeech_vits":
        text = data["text"]
        wav = pipe(text)["wav"]
        name = str(uuid.uuid4())[:4]
        sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16")
        result = {"path": f"/audios/{name}.wav"}

    if model_id == "microsoft/speecht5_tts":
        text = data["text"]
        inputs = pipes[model_id]["processor"](text=text, return_tensors="pt")
        embeddings_dataset = pipes[model_id]["embeddings_dataset"]
        speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"])
        pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
        speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
        name = str(uuid.uuid4())[:4]
        sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
        result = {"path": f"/audios/{name}.wav"}

    # ASR
    if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr":
        audio_url = data["audio_url"]
        result = { "text": pipe(audio_url)["text"]}

    # audio to audio
    if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k":
        audio_url = data["audio_url"]
        wav, sr = torchaudio.load(audio_url)
        with torch.no_grad():
            result_wav = pipe(wav.to(pipes[model_id]["device"]))
        name = str(uuid.uuid4())[:4]
        sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr)
        result = {"path": f"/audios/{name}.wav"}
    
    if model_id == "microsoft/speecht5_vc":
        audio_url = data["audio_url"]
        wav, sr = torchaudio.load(audio_url)
        inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt")
        embeddings_dataset = pipes[model_id]["embeddings_dataset"]
        speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
        pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
        speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
        name = str(uuid.uuid4())[:4]
        sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
        result = {"path": f"/audios/{name}.wav"}
    
    # segmentation
    if model_id == "facebook/detr-resnet-50-panoptic":
        result = []
        segments = pipe(data["img_url"])
        image = load_image(data["img_url"])

        colors = []
        for i in range(len(segments)):
            colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50))

        for segment in segments:
            mask = segment["mask"]
            mask = mask.convert('L')
            layer = Image.new('RGBA', mask.size, colors[i])
            image.paste(layer, (0, 0), mask)
        name = str(uuid.uuid4())[:4]
        image.save(f"public/images/{name}.jpg")
        result = {"path": f"/images/{name}.jpg"}

    if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade":
        image = load_image(data["img_url"])
        inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"])
        outputs = pipe(**inputs)
        result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
        predicted_panoptic_map = result["segmentation"].cpu().numpy()
        predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8))
        name = str(uuid.uuid4())[:4]
        predicted_panoptic_map.save(f"public/images/{name}.jpg")
        result = {"path": f"/images/{name}.jpg"}

except Exception as e:
    print(e)
    traceback.print_exc()
    result = {"error": {"message": "Error when running the model inference."}}

if "device" in pipes[model_id]:
    try:
        pipe.to("cpu")
        torch.cuda.empty_cache()
    except:
        pipe.device = torch.device("cpu")
        pipe.model.to("cpu")
        torch.cuda.empty_cache()

pipes[model_id]["using"] = False

if result is None:
    result = {"error": {"message": "model not found"}}

end = time.time()
during = end - start
print(f"[ complete {model_id} ] {during}s")
print(f"[ result {model_id} ] {result}")

return result