start = time.time() pipe = pipes[model_id]["model"] if "device" in pipes[model_id]: try: pipe.to(pipes[model_id]["device"]) except: pipe.device = torch.device(pipes[model_id]["device"]) pipe.model.to(pipes[model_id]["device"]) result = None try: # text to video if model_id == "damo-vilab/text-to-video-ms-1.7b": pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # pipe.enable_model_cpu_offload() prompt = data["text"] video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames file_name = str(uuid.uuid4())[:4] video_path = export_to_video(video_frames, f"public/videos/{file_name}.mp4") new_file_name = str(uuid.uuid4())[:4] os.system(f"ffmpeg -i {video_path} -vcodec libx264 public/videos/{new_file_name}.mp4") if os.path.exists(f"public/videos/{new_file_name}.mp4"): result = {"path": f"/videos/{new_file_name}.mp4"} else: result = {"path": f"/videos/{file_name}.mp4"} # controlnet if model_id.startswith("lllyasviel/sd-controlnet-"): pipe.controlnet.to('cpu') pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"]) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) control_image = load_image(data["img_url"]) # generator = torch.manual_seed(66) out_image: Image = pipe(data["text"], num_inference_steps=20, image=control_image).images[0] file_name = str(uuid.uuid4())[:4] out_image.save(f"public/images/{file_name}.png") result = {"path": f"/images/{file_name}.png"} if model_id.endswith("-control"): image = load_image(data["img_url"]) if "scribble" in model_id: control = pipe(image, scribble = True) elif "canny" in model_id: control = pipe(image, low_threshold=100, high_threshold=200) else: control = pipe(image) file_name = str(uuid.uuid4())[:4] control.save(f"public/images/{file_name}.png") result = {"path": f"/images/{file_name}.png"} # image to image if model_id == "lambdalabs/sd-image-variations-diffusers": im = load_image(data["img_url"]) file_name = str(uuid.uuid4())[:4] with open(f"public/images/{file_name}.png", "wb") as f: f.write(data) tform = transforms.Compose([ transforms.ToTensor(), transforms.Resize( (224, 224), interpolation=transforms.InterpolationMode.BICUBIC, antialias=False, ), transforms.Normalize( [0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711]), ]) inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0) out = pipe(inp, guidance_scale=3) out["images"][0].save(f"public/images/{file_name}.jpg") result = {"path": f"/images/{file_name}.jpg"} # image to text if model_id == "Salesforce/blip-image-captioning-large": raw_image = load_image(data["img_url"]).convert('RGB') text = data["text"] inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"]) out = pipe.generate(**inputs) caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True) result = {"generated text": caption} if model_id == "ydshieh/vit-gpt2-coco-en": img_url = data["img_url"] generated_text = pipe(img_url)[0]['generated_text'] result = {"generated text": generated_text} if model_id == "nlpconnect/vit-gpt2-image-captioning": image = load_image(data["img_url"]).convert("RGB") pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(pipes[model_id]["device"]) generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1}) generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0] result = {"generated text": generated_text} # image to text: OCR if model_id == "microsoft/trocr-base-printed" or model_id == "microsoft/trocr-base-handwritten": image = load_image(data["img_url"]).convert("RGB") pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(pipes[model_id]["device"]) generated_ids = pipe.generate(pixel_values) generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0] result = {"generated text": generated_text} # text to image if model_id == "runwayml/stable-diffusion-v1-5": file_name = str(uuid.uuid4())[:4] text = data["text"] out = pipe(prompt=text) out["images"][0].save(f"public/images/{file_name}.jpg") result = {"path": f"/images/{file_name}.jpg"} # object detection if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101": img_url = data["img_url"] open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"] result = pipe(img_url, candidate_labels=open_types) # VQA if model_id == "dandelin/vilt-b32-finetuned-vqa": question = data["text"] img_url = data["img_url"] result = pipe(question=question, image=img_url) #DQA if model_id == "impira/layoutlm-document-qa": question = data["text"] img_url = data["img_url"] result = pipe(img_url, question) # depth-estimation if model_id == "Intel/dpt-large": output = pipe(data["img_url"]) image = output['depth'] name = str(uuid.uuid4())[:4] image.save(f"public/images/{name}.jpg") result = {"path": f"/images/{name}.jpg"} if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large": image = load_image(data["img_url"]) inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt") with torch.no_grad(): outputs = pipe(**inputs) predicted_depth = outputs.predicted_depth prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") image = Image.fromarray(formatted) name = str(uuid.uuid4())[:4] image.save(f"public/images/{name}.jpg") result = {"path": f"/images/{name}.jpg"} # TTS if model_id == "espnet/kan-bayashi_ljspeech_vits": text = data["text"] wav = pipe(text)["wav"] name = str(uuid.uuid4())[:4] sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16") result = {"path": f"/audios/{name}.wav"} if model_id == "microsoft/speecht5_tts": text = data["text"] inputs = pipes[model_id]["processor"](text=text, return_tensors="pt") embeddings_dataset = pipes[model_id]["embeddings_dataset"] speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"]) pipes[model_id]["vocoder"].to(pipes[model_id]["device"]) speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"]) name = str(uuid.uuid4())[:4] sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000) result = {"path": f"/audios/{name}.wav"} # ASR if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr": audio_url = data["audio_url"] result = { "text": pipe(audio_url)["text"]} # audio to audio if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": audio_url = data["audio_url"] wav, sr = torchaudio.load(audio_url) with torch.no_grad(): result_wav = pipe(wav.to(pipes[model_id]["device"])) name = str(uuid.uuid4())[:4] sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr) result = {"path": f"/audios/{name}.wav"} if model_id == "microsoft/speecht5_vc": audio_url = data["audio_url"] wav, sr = torchaudio.load(audio_url) inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt") embeddings_dataset = pipes[model_id]["embeddings_dataset"] speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) pipes[model_id]["vocoder"].to(pipes[model_id]["device"]) speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"]) name = str(uuid.uuid4())[:4] sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000) result = {"path": f"/audios/{name}.wav"} # segmentation if model_id == "facebook/detr-resnet-50-panoptic": result = [] segments = pipe(data["img_url"]) image = load_image(data["img_url"]) colors = [] for i in range(len(segments)): colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50)) for segment in segments: mask = segment["mask"] mask = mask.convert('L') layer = Image.new('RGBA', mask.size, colors[i]) image.paste(layer, (0, 0), mask) name = str(uuid.uuid4())[:4] image.save(f"public/images/{name}.jpg") result = {"path": f"/images/{name}.jpg"} if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade": image = load_image(data["img_url"]) inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"]) outputs = pipe(**inputs) result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] predicted_panoptic_map = result["segmentation"].cpu().numpy() predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8)) name = str(uuid.uuid4())[:4] predicted_panoptic_map.save(f"public/images/{name}.jpg") result = {"path": f"/images/{name}.jpg"} except Exception as e: print(e) traceback.print_exc() result = {"error": {"message": "Error when running the model inference."}} if "device" in pipes[model_id]: try: pipe.to("cpu") torch.cuda.empty_cache() except: pipe.device = torch.device("cpu") pipe.model.to("cpu") torch.cuda.empty_cache() pipes[model_id]["using"] = False if result is None: result = {"error": {"message": "model not found"}} end = time.time() during = end - start print(f"[ complete {model_id} ] {during}s") print(f"[ result {model_id} ] {result}") return result