Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,9 @@
|
|
1 |
-
# from fastapi import FastAPI, HTTPException
|
2 |
-
# from pydantic import BaseModel
|
3 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
# import torch
|
5 |
-
# from huggingface_hub import snapshot_download
|
6 |
-
# from safetensors.torch import load_file
|
7 |
-
|
8 |
-
# class ModelInput(BaseModel):
|
9 |
-
# prompt: str
|
10 |
-
# max_new_tokens: int = 50
|
11 |
-
|
12 |
-
# app = FastAPI()
|
13 |
-
|
14 |
-
# # Define model paths
|
15 |
-
# base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
16 |
-
# adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
17 |
-
|
18 |
-
# try:
|
19 |
-
# # First load the base model
|
20 |
-
# print("Loading base model...")
|
21 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
22 |
-
# base_model_path,
|
23 |
-
# torch_dtype=torch.float16,
|
24 |
-
# trust_remote_code=True,
|
25 |
-
# device_map="auto"
|
26 |
-
# )
|
27 |
-
|
28 |
-
# # Load tokenizer from base model
|
29 |
-
# print("Loading tokenizer...")
|
30 |
-
# tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
31 |
-
|
32 |
-
# # Download adapter weights
|
33 |
-
# print("Downloading adapter weights...")
|
34 |
-
# adapter_path_local = snapshot_download(adapter_path)
|
35 |
-
|
36 |
-
# # Load the safetensors file
|
37 |
-
# print("Loading adapter weights...")
|
38 |
-
# state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
|
39 |
-
|
40 |
-
# # Load state dict into model
|
41 |
-
# model.load_state_dict(state_dict, strict=False)
|
42 |
-
|
43 |
-
# print("Model and adapter loaded successfully!")
|
44 |
-
|
45 |
-
# except Exception as e:
|
46 |
-
# print(f"Error during model loading: {e}")
|
47 |
-
# raise
|
48 |
-
|
49 |
-
# def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
50 |
-
# """Generate a response from the model based on an instruction."""
|
51 |
-
# try:
|
52 |
-
# messages = [{"role": "user", "content": instruction}]
|
53 |
-
# input_text = tokenizer.apply_chat_template(
|
54 |
-
# messages, tokenize=False, add_generation_prompt=True
|
55 |
-
# )
|
56 |
-
|
57 |
-
# inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
58 |
-
# outputs = model.generate(
|
59 |
-
# inputs,
|
60 |
-
# max_new_tokens=max_new_tokens,
|
61 |
-
# temperature=0.2,
|
62 |
-
# top_p=0.9,
|
63 |
-
# do_sample=True,
|
64 |
-
# )
|
65 |
-
|
66 |
-
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
67 |
-
# return response
|
68 |
-
|
69 |
-
# except Exception as e:
|
70 |
-
# raise ValueError(f"Error generating response: {e}")
|
71 |
-
|
72 |
-
# @app.post("/generate")
|
73 |
-
# async def generate_text(input: ModelInput):
|
74 |
-
# try:
|
75 |
-
# response = generate_response(
|
76 |
-
# model=model,
|
77 |
-
# tokenizer=tokenizer,
|
78 |
-
# instruction=input.prompt,
|
79 |
-
# max_new_tokens=input.max_new_tokens
|
80 |
-
# )
|
81 |
-
# return {"generated_text": response}
|
82 |
-
|
83 |
-
# except Exception as e:
|
84 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
85 |
-
|
86 |
-
# @app.get("/")
|
87 |
-
# async def root():
|
88 |
-
# return {"message": "Welcome to the Model API!"}
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# //////////////////////////////////////////
|
96 |
-
|
97 |
from fastapi import FastAPI, HTTPException
|
98 |
from pydantic import BaseModel
|
99 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
100 |
import torch
|
101 |
from huggingface_hub import snapshot_download
|
|
|
102 |
|
103 |
class ModelInput(BaseModel):
|
104 |
prompt: str
|
@@ -119,22 +24,22 @@ try:
|
|
119 |
trust_remote_code=True,
|
120 |
device_map="auto"
|
121 |
)
|
122 |
-
|
123 |
# Load tokenizer from base model
|
124 |
print("Loading tokenizer...")
|
125 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
126 |
-
|
127 |
# Download adapter weights
|
128 |
print("Downloading adapter weights...")
|
129 |
adapter_path_local = snapshot_download(adapter_path)
|
130 |
-
|
131 |
-
# Load the
|
132 |
-
print("Loading adapter
|
133 |
-
|
134 |
-
|
135 |
-
#
|
136 |
-
model =
|
137 |
-
|
138 |
print("Model and adapter loaded successfully!")
|
139 |
|
140 |
except Exception as e:
|
@@ -148,7 +53,7 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
148 |
input_text = tokenizer.apply_chat_template(
|
149 |
messages, tokenize=False, add_generation_prompt=True
|
150 |
)
|
151 |
-
|
152 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
153 |
outputs = model.generate(
|
154 |
inputs,
|
@@ -157,10 +62,10 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
157 |
top_p=0.9,
|
158 |
do_sample=True,
|
159 |
)
|
160 |
-
|
161 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
162 |
return response
|
163 |
-
|
164 |
except Exception as e:
|
165 |
raise ValueError(f"Error generating response: {e}")
|
166 |
|
@@ -174,10 +79,105 @@ async def generate_text(input: ModelInput):
|
|
174 |
max_new_tokens=input.max_new_tokens
|
175 |
)
|
176 |
return {"generated_text": response}
|
177 |
-
|
178 |
except Exception as e:
|
179 |
raise HTTPException(status_code=500, detail=str(e))
|
180 |
|
181 |
@app.get("/")
|
182 |
async def root():
|
183 |
return {"message": "Welcome to the Model API!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
from huggingface_hub import snapshot_download
|
6 |
+
from safetensors.torch import load_file
|
7 |
|
8 |
class ModelInput(BaseModel):
|
9 |
prompt: str
|
|
|
24 |
trust_remote_code=True,
|
25 |
device_map="auto"
|
26 |
)
|
27 |
+
|
28 |
# Load tokenizer from base model
|
29 |
print("Loading tokenizer...")
|
30 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
31 |
+
|
32 |
# Download adapter weights
|
33 |
print("Downloading adapter weights...")
|
34 |
adapter_path_local = snapshot_download(adapter_path)
|
35 |
+
|
36 |
+
# Load the safetensors file
|
37 |
+
print("Loading adapter weights...")
|
38 |
+
state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
|
39 |
+
|
40 |
+
# Load state dict into model
|
41 |
+
model.load_state_dict(state_dict, strict=False)
|
42 |
+
|
43 |
print("Model and adapter loaded successfully!")
|
44 |
|
45 |
except Exception as e:
|
|
|
53 |
input_text = tokenizer.apply_chat_template(
|
54 |
messages, tokenize=False, add_generation_prompt=True
|
55 |
)
|
56 |
+
|
57 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
58 |
outputs = model.generate(
|
59 |
inputs,
|
|
|
62 |
top_p=0.9,
|
63 |
do_sample=True,
|
64 |
)
|
65 |
+
|
66 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
67 |
return response
|
68 |
+
|
69 |
except Exception as e:
|
70 |
raise ValueError(f"Error generating response: {e}")
|
71 |
|
|
|
79 |
max_new_tokens=input.max_new_tokens
|
80 |
)
|
81 |
return {"generated_text": response}
|
82 |
+
|
83 |
except Exception as e:
|
84 |
raise HTTPException(status_code=500, detail=str(e))
|
85 |
|
86 |
@app.get("/")
|
87 |
async def root():
|
88 |
return {"message": "Welcome to the Model API!"}
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
# //////////////////////////////////////////
|
96 |
+
|
97 |
+
# from fastapi import FastAPI, HTTPException
|
98 |
+
# from pydantic import BaseModel
|
99 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoAdapterModel
|
100 |
+
# import torch
|
101 |
+
# from huggingface_hub import snapshot_download
|
102 |
+
|
103 |
+
# class ModelInput(BaseModel):
|
104 |
+
# prompt: str
|
105 |
+
# max_new_tokens: int = 50
|
106 |
+
|
107 |
+
# app = FastAPI()
|
108 |
+
|
109 |
+
# # Define model paths
|
110 |
+
# base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
111 |
+
# adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
112 |
+
|
113 |
+
# try:
|
114 |
+
# # First load the base model
|
115 |
+
# print("Loading base model...")
|
116 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
117 |
+
# base_model_path,
|
118 |
+
# torch_dtype=torch.float16,
|
119 |
+
# trust_remote_code=True,
|
120 |
+
# device_map="auto"
|
121 |
+
# )
|
122 |
+
|
123 |
+
# # Load tokenizer from base model
|
124 |
+
# print("Loading tokenizer...")
|
125 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
126 |
+
|
127 |
+
# # Download adapter weights
|
128 |
+
# print("Downloading adapter weights...")
|
129 |
+
# adapter_path_local = snapshot_download(adapter_path)
|
130 |
+
|
131 |
+
# # Load the adapter model
|
132 |
+
# print("Loading adapter model...")
|
133 |
+
# adapter_model = AutoAdapterModel.from_pretrained(adapter_path_local, from_pt=True)
|
134 |
+
|
135 |
+
# # Combine the base model and adapter
|
136 |
+
# model = model.with_adapter(adapter_model)
|
137 |
+
|
138 |
+
# print("Model and adapter loaded successfully!")
|
139 |
+
|
140 |
+
# except Exception as e:
|
141 |
+
# print(f"Error during model loading: {e}")
|
142 |
+
# raise
|
143 |
+
|
144 |
+
# def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
145 |
+
# """Generate a response from the model based on an instruction."""
|
146 |
+
# try:
|
147 |
+
# messages = [{"role": "user", "content": instruction}]
|
148 |
+
# input_text = tokenizer.apply_chat_template(
|
149 |
+
# messages, tokenize=False, add_generation_prompt=True
|
150 |
+
# )
|
151 |
+
|
152 |
+
# inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
153 |
+
# outputs = model.generate(
|
154 |
+
# inputs,
|
155 |
+
# max_new_tokens=max_new_tokens,
|
156 |
+
# temperature=0.2,
|
157 |
+
# top_p=0.9,
|
158 |
+
# do_sample=True,
|
159 |
+
# )
|
160 |
+
|
161 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
162 |
+
# return response
|
163 |
+
|
164 |
+
# except Exception as e:
|
165 |
+
# raise ValueError(f"Error generating response: {e}")
|
166 |
+
|
167 |
+
# @app.post("/generate")
|
168 |
+
# async def generate_text(input: ModelInput):
|
169 |
+
# try:
|
170 |
+
# response = generate_response(
|
171 |
+
# model=model,
|
172 |
+
# tokenizer=tokenizer,
|
173 |
+
# instruction=input.prompt,
|
174 |
+
# max_new_tokens=input.max_new_tokens
|
175 |
+
# )
|
176 |
+
# return {"generated_text": response}
|
177 |
+
|
178 |
+
# except Exception as e:
|
179 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
180 |
+
|
181 |
+
# @app.get("/")
|
182 |
+
# async def root():
|
183 |
+
# return {"message": "Welcome to the Model API!"}
|