Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
+
from peft import PeftModel
|
6 |
+
|
7 |
+
import os
|
8 |
+
from huggingface_hub import login
|
9 |
+
|
10 |
+
# β
Read token from Hugging Face Secrets
|
11 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
+
|
13 |
+
# β
Login only if token exists
|
14 |
+
if HF_TOKEN:
|
15 |
+
login(token=HF_TOKEN)
|
16 |
+
|
17 |
+
|
18 |
+
# β
Initialize FastAPI
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
# β
Define Base Model & LoRA Adapter Repository
|
22 |
+
base_model_name = "mistralai/Mistral-7B-v0.1"
|
23 |
+
lora_repo_id = "khushi1234455687/fine-tuned-medical-qa-V8"
|
24 |
+
|
25 |
+
# β
Load Tokenizer
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
27 |
+
|
28 |
+
# β
Configure 4-bit Quantization
|
29 |
+
quantization_config = BitsAndBytesConfig(
|
30 |
+
load_in_4bit=True,
|
31 |
+
llm_int8_enable_fp32_cpu_offload=True,
|
32 |
+
offload_buffers=True
|
33 |
+
)
|
34 |
+
|
35 |
+
# β
Load Base Model
|
36 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
base_model_name,
|
38 |
+
quantization_config=quantization_config,
|
39 |
+
device_map="auto",
|
40 |
+
torch_dtype=torch.float16
|
41 |
+
)
|
42 |
+
|
43 |
+
# β
Load LoRA Adapter
|
44 |
+
model = PeftModel.from_pretrained(base_model, lora_repo_id)
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
print("β
Model is loaded and API is ready!")
|
48 |
+
|
49 |
+
# β
Define Request Body Format
|
50 |
+
class QueryRequest(BaseModel):
|
51 |
+
question: str
|
52 |
+
|
53 |
+
@app.post("/generate")
|
54 |
+
async def generate_answer(request: QueryRequest):
|
55 |
+
"""Generate an answer for a given medical question."""
|
56 |
+
inputs = tokenizer(request.question, return_tensors="pt").to("cuda")
|
57 |
+
with torch.no_grad():
|
58 |
+
output = model.generate(**inputs, max_length=256)
|
59 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
return {"question": request.question, "answer": answer}
|
62 |
+
|