khushpatel2002's picture
Upload 22 files
e4806d5
import numpy as np
import matplotlib.pyplot as plt
def plot_2d(C, A, B, initial_point):
n_constraints = A.shape[0] # Get the number of constraints
plt.figure(figsize=(8, 6))
plt.xlim(0, 5) # Adjust based on your problem
plt.ylim(0, 5) # Adjust based on your problem
plt.xlabel('X1')
plt.ylabel('X2')
# Plot feasible region (constraints)
x1 = np.linspace(0, 5, 100)
for i in range(n_constraints):
x2_i = (B[i] - A[i, 0] * x1) / A[i, 1] # Calculate x2 values for each constraint
plt.plot(x1, x2_i, label=f'{A[i, 0]}*X1 + {A[i, 1]}*X2 <= {B[i]}')
# Fill the feasible region
min_x2 = np.minimum.reduce([(B[i] - A[i, 0] * x1) / A[i, 1] for i in range(n_constraints)])
plt.fill_between(x1, min_x2, 0, where=(x1 >= 0) & (x1 <= 5), alpha=0.2)
# Plot the initial feasible solution point
plt.scatter(initial_point[0], initial_point[1], color='red', marker='o', label='Initial Point')
plt.legend()
plt.show()
# Example usage with variable-sized A and B:
C = np.array([2, 3]) # Objective function coefficients
A = np.array([[1, 1], # Constraint matrix
[2, 1],
[3, 1]]) # Add more rows for additional constraints
B = np.array([4, 5, 6]) # Right-hand side, add more values for additional constraints
initial_point = np.array([1.0, 3.0])
plot_2d(C, A, B, initial_point)