Spaces:
Runtime error
Runtime error
import numpy as np | |
import matplotlib.pyplot as plt | |
def plot_2d(C, A, B, initial_point): | |
n_constraints = A.shape[0] # Get the number of constraints | |
plt.figure(figsize=(8, 6)) | |
plt.xlim(0, 5) # Adjust based on your problem | |
plt.ylim(0, 5) # Adjust based on your problem | |
plt.xlabel('X1') | |
plt.ylabel('X2') | |
# Plot feasible region (constraints) | |
x1 = np.linspace(0, 5, 100) | |
for i in range(n_constraints): | |
x2_i = (B[i] - A[i, 0] * x1) / A[i, 1] # Calculate x2 values for each constraint | |
plt.plot(x1, x2_i, label=f'{A[i, 0]}*X1 + {A[i, 1]}*X2 <= {B[i]}') | |
# Fill the feasible region | |
min_x2 = np.minimum.reduce([(B[i] - A[i, 0] * x1) / A[i, 1] for i in range(n_constraints)]) | |
plt.fill_between(x1, min_x2, 0, where=(x1 >= 0) & (x1 <= 5), alpha=0.2) | |
# Plot the initial feasible solution point | |
plt.scatter(initial_point[0], initial_point[1], color='red', marker='o', label='Initial Point') | |
plt.legend() | |
plt.show() | |
# Example usage with variable-sized A and B: | |
C = np.array([2, 3]) # Objective function coefficients | |
A = np.array([[1, 1], # Constraint matrix | |
[2, 1], | |
[3, 1]]) # Add more rows for additional constraints | |
B = np.array([4, 5, 6]) # Right-hand side, add more values for additional constraints | |
initial_point = np.array([1.0, 3.0]) | |
plot_2d(C, A, B, initial_point) | |