Spaces:
Sleeping
Sleeping
File size: 8,052 Bytes
2b3cd9e 67764eb 2b3cd9e 67764eb 2b3cd9e 67764eb 2b3cd9e 67764eb 2b3cd9e 67764eb 2b3cd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import pandas as pd
import gradio as gr
import openai
from datetime import datetime
# OpenAI API ํด๋ผ์ด์ธํธ ์ค์
openai.api_key = os.getenv("OPENAI_API_KEY")
# LLM ํธ์ถ ํจ์
def call_api(content, system_message, max_tokens=2000, temperature=0.7, top_p=0.9):
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": content},
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message['content']
# ์์
๋ฐ์ดํฐ ์ฝ๊ธฐ ํจ์
def read_excel_data(file):
df = pd.read_excel(file, usecols="A, B, C, D, E", skiprows=1,
names=["ID", "Review Date", "Option", "Review", "ReviewScore"], engine='openpyxl')
df['Review Date'] = pd.to_datetime(df['Review Date']).dt.tz_localize(None).dt.date
df['Year'] = df['Review Date'].astype(str).str.slice(0, 4)
df['Option1'] = df['Option'].astype(str).str.split(" / ").str[0]
df['Review Length'] = df['Review'].str.len()
return df
# ๊ธ์ ์ ์ธ ๋ฆฌ๋ทฐ๋ฅผ ๋ฐํํ๋ ํจ์
def get_positive_reviews(df):
positive_reviews = df[df['ReviewScore'] >= 4].sort_values(by='Review Length', ascending=False)
positive_reviews = positive_reviews.head(20)
positive_reviews.reset_index(drop=True, inplace=True)
positive_reviews.index += 1
positive_reviews['์๋ฒ'] = positive_reviews.index
positive_output = "\n\n".join(positive_reviews.apply(
lambda x: f"{x['์๋ฒ']}. **{x['Review Date']} / {x['ID']} / {x['Option']}**\n\n{x['Review']}", axis=1))
system_message = """[์ค์ ๊ท์น]
1. ๋ฐ๋์ ํ๊ธ(ํ๊ตญ์ด)๋ก ์ถ๋ ฅํ๋ผ.
2. ๋๋ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ๋ถ์ํ๋ ๋น
๋ฐ์ดํฐ ๋ถ์๊ฐ์ด๋ค.
3. ๊ณ ๊ฐ์ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ๋ฐํ์ผ๋ก ๊ธ์ ์ ์ธ ์๊ฒฌ์ ๋ฐ์ดํฐ๋ง ๋ถ์ํ๋ผ.
4. ๋ฐ๋์ ์ ๊ณต๋ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์์๋ง ๋ถ์ํ๋ผ.
5. ๋์ ์๊ฐ์ ํฌํจํ์ง ๋ง ๊ฒ.
[๋ถ์ ์กฐ๊ฑด]
1. ์ด 20๊ฐ์ ๋ฆฌ๋ทฐ๋ฐ์ดํฐ๋ฅผ ์ ๊ณตํ๋ค.
2. ๊ฐ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์ ๋์งธ์ค ๋ถํฐ์ ์ค์ ๊ณ ๊ฐ๋ฆฌ๋ทฐ๋ฅผ ๋ฐ์ํ๋ผ.
3. ๋ฐ๋์ ๊ธ์ ์ ์ธ ์๊ฒฌ๋ง์ ๋ถ์ํ๋ผ. ๋ถ์ ์ ์ธ ์๊ฒฌ์ ์ ์ธํ๋ผ.
4. ๊ธฐ๋ฅ๊ณผ ์ฑ๋ฅ์ ๋ถ๋ถ, ๊ฐ์ฑ์ ์ธ ๋ถ๋ถ, ์ค์ ์ฌ์ฉ ์ธก๋ฉด์ ๋ถ๋ถ, ๋ฐฐ์ก์ ๋ถ๋ถ, ํ๊ฒ๋ณ ๋ถ๋ถ์ ๊ด์ ์ผ๋ก ๋ถ์ํ๋ผ.
5. 4๋ฒ์ ์กฐ๊ฑด์ ํฌํจ๋์ง ์๋ ๊ธ์ ์ ์ธ ๋ฆฌ๋ทฐ๋ฅผ ๋ณ๋๋ก ์ถ๋ ฅํ๋ผ.
6. ๋ง์ผํ
์ ์ธ ์์๋ก ์ฌ์ฉํ ์ ์๋ ๊ณ ๊ฐ์ ์ค์ ๋ฆฌ๋ทฐ๋ฅผ ๋ฐ์ํ๋ผ.
[์ถ๋ ฅ ํํ ์กฐ๊ฑด]
1. ๊ฐ๊ฐ์ ์ ๋ชฉ ์์ '๐'์ด๋ชจ์ง๋ฅผ ์ถ๋ ฅํ๋ผ,'#', '##'์ ์ถ๋ ฅํ์ง ๋ง๊ฒ.
2. ๊ฐ์ฅ ๋ง์ง๋ง์ ์ข
ํฉ ์๊ฒฌ์ ์์ฑํ๋ผ, "๐์ข
ํฉ์๊ฒฌ"์ ์ ๋ชฉํํ๋ฅผ ์ฌ์ฉํ๋ผ.
[์ข
ํฉ์๊ฒฌ์ ์ถ๋ ฅ ์กฐ๊ฑด ์์]
('์ข
ํฉ์๊ฒฌ'์ด ์๋ ๋ค๋ฅธ ๋ถ๋ถ์ ์ด ์ถ๋ ฅ ์กฐ๊ฑด์ ๋ฐ์ํ์ง ๋ง ๊ฒ.
- ํญ๋ชฉ๋ณ ์ ๋ชฉ์ ์ ์ธํ๋ผ.
- ์ข
ํฉ์๊ฒฌ์๋ ํญ๋ชฉ๋ณ ์ ๋ชฉ์ ์ ์ธํ๊ณ ์์ ์ ๋ฌธ์ฅ์ผ๋ก ์์ฑํ๋ผ.
- ๋งค์ถ์ ๊ทน๋ํ ํ ์ ์๋ ๊ณ ๊ฐ์ ์ค์ ๋ฆฌ๋ทฐ ํฌ์ธํธ๋ฅผ ์ ์ํ๋ผ.
[SWOT๋ถ์ ์กฐ๊ฑด]
1. '์ข
ํฉ์๊ฒฌ' ๋ค์ ๋ด์ฉ์ผ๋ก SWOT๋ถ์ ์๊ฒฌ์ ์ถ๋ ฅํ๋ผ.
2. SWOT๋ถ์ ์ค '๊ฐ์ '์๊ฒฌ๊ณผ '๊ธฐํ'์ ์๊ฒฌ์ ์ถ๋ ฅํ๋ผ.
3. ๋ฐ๋์ '์ข
ํฉ์๊ฒฌ'์ ๋ด์ฉ์ ๊ธฐ๋ฐ์ผ๋ก ์์ฑํ๋ผ.
4. ์ ๋ชฉ์ '๐น ๊ฐ์ ', '๐น ๊ธฐํ'์ผ๋ก ์ถ๋ ฅํ๋ผ.
[์ข
ํฉ์๊ฒฌ์ ์ถ๋ ฅ ์กฐ๊ฑด ๋]
3. ์ค์ ๊ณ ๊ฐ์ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์์ ์ฌ์ฉ๋ ๋จ์ด๋ฅผ ํฌํจํ๋ผ.
4. ๋์ ์๊ฐ์ ์์๋ก ๋ฃ์ง ๋ง ๊ฒ.
"""
analysis = call_api(positive_output, system_message=system_message)
return positive_output, analysis
# ๋ถ์ ์ ์ธ ๋ฆฌ๋ทฐ๋ฅผ ๋ฐํํ๋ ํจ์
def get_negative_reviews(df):
negative_reviews = df[df['ReviewScore'] <= 2].sort_values(by='Review Length', ascending=False)
negative_reviews = negative_reviews.head(30)
negative_reviews.reset_index(drop=True, inplace=True)
negative_reviews.index += 1
negative_reviews['์๋ฒ'] = negative_reviews.index
negative_output = "\n\n".join(negative_reviews.apply(
lambda x: f"{x['์๋ฒ']}. **{x['Review Date']} / {x['ID']} / {x['Option']}**\n\n{x['Review']}", axis=1))
system_message = """[์ค์ ๊ท์น]
1. ๋ฐ๋์ ํ๊ธ(ํ๊ตญ์ด)๋ก ์ถ๋ ฅํ๋ผ.
2. ๋๋ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ๋ถ์ํ๋ ๋น
๋ฐ์ดํฐ ๋ถ์๊ฐ์ด๋ค.
3. ๊ณ ๊ฐ์ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ๋ฐํ์ผ๋ก ๋ถ์ ์ ์ธ ์๊ฒฌ์ ๋ฐ์ดํฐ๋ง ๋ถ์ํ๋ผ.
4. ๋ฐ๋์ ์ ๊ณต๋ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์์๋ง ๋ถ์ํ๋ผ.
5. ๋์ ์๊ฐ์ ํฌํจํ์ง ๋ง ๊ฒ.
[๋ถ์ ์กฐ๊ฑด]
1. ์ด 30๊ฐ์ ๋ฆฌ๋ทฐ๋ฐ์ดํฐ๋ฅผ ์ ๊ณตํ๋ค.
2. ๊ฐ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์ ๋์งธ์ค ๋ถํฐ์ ์ค์ ๊ณ ๊ฐ๋ฆฌ๋ทฐ๋ฅผ ๋ฐ์ํ๋ผ.
3. ๋ถ์ ์ ์ธ ์๊ฒฌ๋ง์ ๋ถ์ํ๋ผ.
4. ๊ธฐ๋ฅ๊ณผ ์ฑ๋ฅ์ ๋ถ๋ถ, ๊ฐ์ฑ์ ์ธ ๋ถ๋ถ, ์ค์ ์ฌ์ฉ ์ธก๋ฉด์ ๋ถ๋ถ, ๋ฐฐ์ก์ ๋ถ๋ถ, ๊ณ ๊ฐ์ ๋ถ๋
ธ ๋ถ๋ถ์ ๊ด์ ์ผ๋ก ๋ถ์ํ๋ผ.
5. 4๋ฒ์ ์กฐ๊ฑด์ ํฌํจ๋์ง ์๋ ๋ถ์ ์ ์ธ ๋ฆฌ๋ทฐ๋ฅผ ๋ณ๋๋ก ์ถ๋ ฅํ๋ผ.
6. ๋ถ์ ์ ์ธ ๋ฆฌ๋ทฐ ๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํ์ผ๋ก '๊ฐ์ ํ ์ '์ ์ถ๋ ฅํ๋ผ.
[์ถ๋ ฅ ํํ ์กฐ๊ฑด]
1. ๊ฐ๊ฐ์ ์ ๋ชฉ ์์ '๐'์ด๋ชจ์ง๋ฅผ ์ถ๋ ฅํ๋ผ,'#', '##'์ ์ถ๋ ฅํ์ง ๋ง๊ฒ.
2. ๊ฐ์ฅ ๋ง์ง๋ง์ '๊ฐ์ ํ ์ '์ ์ถ๋ ฅํ๋ผ("๐ข๊ฐ์ ํ ์ "์ ์ ๋ชฉํํ๋ฅผ ์ฌ์ฉํ๋ผ.)
[๊ฐ์ ํ ์ ์ ์ถ๋ ฅ ์กฐ๊ฑด ์์]
('๊ฐ์ ํ ์ '์ด ์๋ ๋ค๋ฅธ ๋ถ๋ถ์ ์ด ์ถ๋ ฅ ์กฐ๊ฑด์ ๋ฐ์ํ์ง ๋ง ๊ฒ.
- ํญ๋ชฉ๋ณ ์ ๋ชฉ์ ์ ์ธํ๋ผ.
- ์ฃผ์ ํญ๋ชฉ๋ณ๋ก ๊ฐ์ ํ ์ ์ ์ถ๋ ฅํ๋ผ.
- ์ ๋ฌธ์ ์ด๊ณ , ๋ถ์์ ์ด๋ฉฐ, ์ ์ํ๋ ํํ์ ๊ณต์ํ ์ดํฌ๋ฅผ ์ฌ์ฉํ๋ผ.(๋จ๋ตํ ํํ ๊ธ์ง)
[SWOT๋ถ์ ์กฐ๊ฑด]
1. '์ข
ํฉ์๊ฒฌ' ๋ค์ ๋ด์ฉ์ผ๋ก SWOT๋ถ์ ์๊ฒฌ์ ์ถ๋ ฅํ๋ผ.
2. SWOT๋ถ์ ์ค '์ฝ์ '์๊ฒฌ๊ณผ '์ํ'์ ์๊ฒฌ์ ์ถ๋ ฅํ๋ผ.
3. ๋ฐ๋์ '๊ฐ์ ํ ์ '์ ๋ด์ฉ์ ๊ธฐ๋ฐ์ผ๋ก ์์ฑํ๋ผ.
4. ์ ๋ชฉ์ '๐ ์ฝ์ ', '๐ ์ํ'์ผ๋ก ์ถ๋ ฅํ๋ผ.
[๊ฐ์ ํ ์ ์ ์ถ๋ ฅ ์กฐ๊ฑด ๋]
3. ์ค์ ๊ณ ๊ฐ์ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์์ ์ฌ์ฉ๋ ๋จ์ด๋ฅผ ํฌํจํ๋ผ.
4. ๋์ ์๊ฐ์ ์์๋ก ๋ฃ์ง ๋ง ๊ฒ.
"""
analysis = call_api(negative_output, system_message=system_message)
return negative_output, analysis
# ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ์ฒ๋ฆฌํ์ฌ ๊ธ์ ๋ฐ ๋ถ์ ๋ฆฌ๋ทฐ๋ฅผ ์ถ์ถํ๋ ํจ์
def process_reviews(file):
df = read_excel_data(file)
positive_reviews, positive_analysis = get_positive_reviews(df)
negative_reviews, negative_analysis = get_negative_reviews(df)
return positive_reviews, positive_analysis, negative_reviews, negative_analysis
# Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("### ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ ์
๋ก๋ ๋ฐ ๋ถ์")
file_input = gr.File(label="์์
ํ์ผ ์
๋ก๋", file_types=[".xlsx"])
analyze_button = gr.Button("๋ฆฌ๋ทฐ๋ถ์")
with gr.Column():
gr.Markdown("### ๊ธ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ (์ต๋ 20๊ฐ)")
positive_reviews_output = gr.Textbox(label="๊ธ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ", interactive=False, lines=20)
positive_analysis_output = gr.Textbox(label="๊ธ์ ๋ฆฌ๋ทฐ ๋ถ์ ๊ฒฐ๊ณผ", interactive=False, lines=10)
gr.Markdown("### ๋ถ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ (์ต๋ 30๊ฐ)")
negative_reviews_output = gr.Textbox(label="๋ถ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ", interactive=False, lines=30)
negative_analysis_output = gr.Textbox(label="๋ถ์ ๋ฆฌ๋ทฐ ๋ถ์ ๊ฒฐ๊ณผ", interactive=False, lines=10)
analyze_button.click(
fn=process_reviews,
inputs=[file_input],
outputs=[positive_reviews_output, positive_analysis_output, negative_reviews_output, negative_analysis_output]
)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch()
|