File size: 10,098 Bytes
4304c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from collections.abc import Generator
from typing import IO, Optional, Union, cast

from core.entities.provider_configuration import ProviderModelBundle
from core.errors.error import ProviderTokenNotInitError
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.provider_manager import ProviderManager


class ModelInstance:
    """

    Model instance class

    """

    def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
        self.provider_model_bundle = provider_model_bundle
        self.model = model
        self.provider = provider_model_bundle.configuration.provider.provider
        self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
        self.model_type_instance = self.provider_model_bundle.model_type_instance

    def _fetch_credentials_from_bundle(self, provider_model_bundle: ProviderModelBundle, model: str) -> dict:
        """

        Fetch credentials from provider model bundle

        :param provider_model_bundle: provider model bundle

        :param model: model name

        :return:

        """
        credentials = provider_model_bundle.configuration.get_current_credentials(
            model_type=provider_model_bundle.model_type_instance.model_type,
            model=model
        )

        if credentials is None:
            raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")

        return credentials

    def invoke_llm(self, prompt_messages: list[PromptMessage], model_parameters: Optional[dict] = None,

                   tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,

                   stream: bool = True, user: Optional[str] = None, callbacks: list[Callback] = None) \
            -> Union[LLMResult, Generator]:
        """

        Invoke large language model



        :param prompt_messages: prompt messages

        :param model_parameters: model parameters

        :param tools: tools for tool calling

        :param stop: stop words

        :param stream: is stream response

        :param user: unique user id

        :param callbacks: callbacks

        :return: full response or stream response chunk generator result

        """
        if not isinstance(self.model_type_instance, LargeLanguageModel):
            raise Exception("Model type instance is not LargeLanguageModel")

        self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
        return self.model_type_instance.invoke(
            model=self.model,
            credentials=self.credentials,
            prompt_messages=prompt_messages,
            model_parameters=model_parameters,
            tools=tools,
            stop=stop,
            stream=stream,
            user=user,
            callbacks=callbacks
        )

    def invoke_text_embedding(self, texts: list[str], user: Optional[str] = None) \
            -> TextEmbeddingResult:
        """

        Invoke large language model



        :param texts: texts to embed

        :param user: unique user id

        :return: embeddings result

        """
        if not isinstance(self.model_type_instance, TextEmbeddingModel):
            raise Exception("Model type instance is not TextEmbeddingModel")

        self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
        return self.model_type_instance.invoke(
            model=self.model,
            credentials=self.credentials,
            texts=texts,
            user=user
        )

    def invoke_rerank(self, query: str, docs: list[str], score_threshold: Optional[float] = None,

                      top_n: Optional[int] = None,

                      user: Optional[str] = None) \
            -> RerankResult:
        """

        Invoke rerank model



        :param query: search query

        :param docs: docs for reranking

        :param score_threshold: score threshold

        :param top_n: top n

        :param user: unique user id

        :return: rerank result

        """
        if not isinstance(self.model_type_instance, RerankModel):
            raise Exception("Model type instance is not RerankModel")

        self.model_type_instance = cast(RerankModel, self.model_type_instance)
        return self.model_type_instance.invoke(
            model=self.model,
            credentials=self.credentials,
            query=query,
            docs=docs,
            score_threshold=score_threshold,
            top_n=top_n,
            user=user
        )

    def invoke_moderation(self, text: str, user: Optional[str] = None) \
            -> bool:
        """

        Invoke moderation model



        :param text: text to moderate

        :param user: unique user id

        :return: false if text is safe, true otherwise

        """
        if not isinstance(self.model_type_instance, ModerationModel):
            raise Exception("Model type instance is not ModerationModel")

        self.model_type_instance = cast(ModerationModel, self.model_type_instance)
        return self.model_type_instance.invoke(
            model=self.model,
            credentials=self.credentials,
            text=text,
            user=user
        )

    def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) \
            -> str:
        """

        Invoke large language model



        :param file: audio file

        :param user: unique user id

        :return: text for given audio file

        """
        if not isinstance(self.model_type_instance, Speech2TextModel):
            raise Exception("Model type instance is not Speech2TextModel")

        self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
        return self.model_type_instance.invoke(
            model=self.model,
            credentials=self.credentials,
            file=file,
            user=user
        )

    def invoke_tts(self, content_text: str, tenant_id: str, voice: str, streaming: bool, user: Optional[str] = None) \
            -> str:
        """

        Invoke large language tts model



        :param content_text: text content to be translated

        :param tenant_id: user tenant id

        :param user: unique user id

        :param voice: model timbre

        :param streaming: output is streaming

        :return: text for given audio file

        """
        if not isinstance(self.model_type_instance, TTSModel):
            raise Exception("Model type instance is not TTSModel")

        self.model_type_instance = cast(TTSModel, self.model_type_instance)
        return self.model_type_instance.invoke(
            model=self.model,
            credentials=self.credentials,
            content_text=content_text,
            user=user,
            tenant_id=tenant_id,
            voice=voice,
            streaming=streaming
        )

    def get_tts_voices(self, language: str) -> list:
        """

        Invoke large language tts model voices



        :param language: tts language

        :return: tts model voices

        """
        if not isinstance(self.model_type_instance, TTSModel):
            raise Exception("Model type instance is not TTSModel")

        self.model_type_instance = cast(TTSModel, self.model_type_instance)
        return self.model_type_instance.get_tts_model_voices(
            model=self.model,
            credentials=self.credentials,
            language=language
        )


class ModelManager:
    def __init__(self) -> None:
        self._provider_manager = ProviderManager()

    def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
        """

        Get model instance

        :param tenant_id: tenant id

        :param provider: provider name

        :param model_type: model type

        :param model: model name

        :return:

        """
        if not provider:
            return self.get_default_model_instance(tenant_id, model_type)
        provider_model_bundle = self._provider_manager.get_provider_model_bundle(
            tenant_id=tenant_id,
            provider=provider,
            model_type=model_type
        )

        return ModelInstance(provider_model_bundle, model)

    def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
        """

        Get default model instance

        :param tenant_id: tenant id

        :param model_type: model type

        :return:

        """
        default_model_entity = self._provider_manager.get_default_model(
            tenant_id=tenant_id,
            model_type=model_type
        )

        if not default_model_entity:
            raise ProviderTokenNotInitError(f"Default model not found for {model_type}")

        return self.get_model_instance(
            tenant_id=tenant_id,
            provider=default_model_entity.provider.provider,
            model_type=model_type,
            model=default_model_entity.model
        )