File size: 21,990 Bytes
4304c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import threading
from typing import Optional, cast

from flask import Flask, current_app

from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.agent_entities import PlanningStrategy
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.models.document import Document
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
from core.rerank.rerank import RerankRunner
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument

default_retrieval_model = {
    'search_method': 'semantic_search',
    'reranking_enable': False,
    'reranking_model': {
        'reranking_provider_name': '',
        'reranking_model_name': ''
    },
    'top_k': 2,
    'score_threshold_enabled': False
}


class DatasetRetrieval:
    def retrieve(self, app_id: str, user_id: str, tenant_id: str,

                 model_config: ModelConfigWithCredentialsEntity,

                 config: DatasetEntity,

                 query: str,

                 invoke_from: InvokeFrom,

                 show_retrieve_source: bool,

                 hit_callback: DatasetIndexToolCallbackHandler,

                 memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
        """

        Retrieve dataset.

        :param app_id: app_id

        :param user_id: user_id

        :param tenant_id: tenant id

        :param model_config: model config

        :param config: dataset config

        :param query: query

        :param invoke_from: invoke from

        :param show_retrieve_source: show retrieve source

        :param hit_callback: hit callback

        :param memory: memory

        :return:

        """
        dataset_ids = config.dataset_ids
        if len(dataset_ids) == 0:
            return None
        retrieve_config = config.retrieve_config

        # check model is support tool calling
        model_type_instance = model_config.provider_model_bundle.model_type_instance
        model_type_instance = cast(LargeLanguageModel, model_type_instance)

        model_manager = ModelManager()
        model_instance = model_manager.get_model_instance(
            tenant_id=tenant_id,
            model_type=ModelType.LLM,
            provider=model_config.provider,
            model=model_config.model
        )

        # get model schema
        model_schema = model_type_instance.get_model_schema(
            model=model_config.model,
            credentials=model_config.credentials
        )

        if not model_schema:
            return None

        planning_strategy = PlanningStrategy.REACT_ROUTER
        features = model_schema.features
        if features:
            if ModelFeature.TOOL_CALL in features \
                    or ModelFeature.MULTI_TOOL_CALL in features:
                planning_strategy = PlanningStrategy.ROUTER
        available_datasets = []
        for dataset_id in dataset_ids:
            # get dataset from dataset id
            dataset = db.session.query(Dataset).filter(
                Dataset.tenant_id == tenant_id,
                Dataset.id == dataset_id
            ).first()

            # pass if dataset is not available
            if not dataset:
                continue

            # pass if dataset is not available
            if (dataset and dataset.available_document_count == 0
                    and dataset.available_document_count == 0):
                continue

            available_datasets.append(dataset)
        all_documents = []
        user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
            all_documents = self.single_retrieve(app_id, tenant_id, user_id, user_from, available_datasets, query,
                                                 model_instance,
                                                 model_config, planning_strategy)
        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
            all_documents = self.multiple_retrieve(app_id, tenant_id, user_id, user_from,
                                                   available_datasets, query, retrieve_config.top_k,
                                                   retrieve_config.score_threshold,
                                                   retrieve_config.reranking_model.get('reranking_provider_name'),
                                                   retrieve_config.reranking_model.get('reranking_model_name'))

        document_score_list = {}
        for item in all_documents:
            if item.metadata.get('score'):
                document_score_list[item.metadata['doc_id']] = item.metadata['score']

        document_context_list = []
        index_node_ids = [document.metadata['doc_id'] for document in all_documents]
        segments = DocumentSegment.query.filter(
            DocumentSegment.dataset_id.in_(dataset_ids),
            DocumentSegment.completed_at.isnot(None),
            DocumentSegment.status == 'completed',
            DocumentSegment.enabled == True,
            DocumentSegment.index_node_id.in_(index_node_ids)
        ).all()

        if segments:
            index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
            sorted_segments = sorted(segments,
                                     key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
                                                                                       float('inf')))
            for segment in sorted_segments:
                if segment.answer:
                    document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
                else:
                    document_context_list.append(segment.get_sign_content())
            if show_retrieve_source:
                context_list = []
                resource_number = 1
                for segment in sorted_segments:
                    dataset = Dataset.query.filter_by(
                        id=segment.dataset_id
                    ).first()
                    document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
                                                            DatasetDocument.enabled == True,
                                                            DatasetDocument.archived == False,
                                                            ).first()
                    if dataset and document:
                        source = {
                            'position': resource_number,
                            'dataset_id': dataset.id,
                            'dataset_name': dataset.name,
                            'document_id': document.id,
                            'document_name': document.name,
                            'data_source_type': document.data_source_type,
                            'segment_id': segment.id,
                            'retriever_from': invoke_from.to_source(),
                            'score': document_score_list.get(segment.index_node_id, None)
                        }

                        if invoke_from.to_source() == 'dev':
                            source['hit_count'] = segment.hit_count
                            source['word_count'] = segment.word_count
                            source['segment_position'] = segment.position
                            source['index_node_hash'] = segment.index_node_hash
                        if segment.answer:
                            source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
                        else:
                            source['content'] = segment.content
                        context_list.append(source)
                    resource_number += 1
                if hit_callback:
                    hit_callback.return_retriever_resource_info(context_list)

            return str("\n".join(document_context_list))
        return ''

    def single_retrieve(self, app_id: str,

                        tenant_id: str,

                        user_id: str,

                        user_from: str,

                        available_datasets: list,

                        query: str,

                        model_instance: ModelInstance,

                        model_config: ModelConfigWithCredentialsEntity,

                        planning_strategy: PlanningStrategy,

                        ):
        tools = []
        for dataset in available_datasets:
            description = dataset.description
            if not description:
                description = 'useful for when you want to answer queries about the ' + dataset.name

            description = description.replace('\n', '').replace('\r', '')
            message_tool = PromptMessageTool(
                name=dataset.id,
                description=description,
                parameters={
                    "type": "object",
                    "properties": {},
                    "required": [],
                }
            )
            tools.append(message_tool)
        dataset_id = None
        if planning_strategy == PlanningStrategy.REACT_ROUTER:
            react_multi_dataset_router = ReactMultiDatasetRouter()
            dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
                                                           user_id, tenant_id)

        elif planning_strategy == PlanningStrategy.ROUTER:
            function_call_router = FunctionCallMultiDatasetRouter()
            dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)

        if dataset_id:
            # get retrieval model config
            dataset = db.session.query(Dataset).filter(
                Dataset.id == dataset_id
            ).first()
            if dataset:
                retrieval_model_config = dataset.retrieval_model \
                    if dataset.retrieval_model else default_retrieval_model

                # get top k
                top_k = retrieval_model_config['top_k']
                # get retrieval method
                if dataset.indexing_technique == "economy":
                    retrival_method = 'keyword_search'
                else:
                    retrival_method = retrieval_model_config['search_method']
                # get reranking model
                reranking_model = retrieval_model_config['reranking_model'] \
                    if retrieval_model_config['reranking_enable'] else None
                # get score threshold
                score_threshold = .0
                score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
                if score_threshold_enabled:
                    score_threshold = retrieval_model_config.get("score_threshold")

                results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id,
                                                    query=query,
                                                    top_k=top_k, score_threshold=score_threshold,
                                                    reranking_model=reranking_model)
                self._on_query(query, [dataset_id], app_id, user_from, user_id)
                if results:
                    self._on_retrival_end(results)
                return results
        return []

    def multiple_retrieve(self,

                          app_id: str,

                          tenant_id: str,

                          user_id: str,

                          user_from: str,

                          available_datasets: list,

                          query: str,

                          top_k: int,

                          score_threshold: float,

                          reranking_provider_name: str,

                          reranking_model_name: str):
        threads = []
        all_documents = []
        dataset_ids = [dataset.id for dataset in available_datasets]
        for dataset in available_datasets:
            retrieval_thread = threading.Thread(target=self._retriever, kwargs={
                'flask_app': current_app._get_current_object(),
                'dataset_id': dataset.id,
                'query': query,
                'top_k': top_k,
                'all_documents': all_documents,
            })
            threads.append(retrieval_thread)
            retrieval_thread.start()
        for thread in threads:
            thread.join()
        # do rerank for searched documents
        model_manager = ModelManager()
        rerank_model_instance = model_manager.get_model_instance(
            tenant_id=tenant_id,
            provider=reranking_provider_name,
            model_type=ModelType.RERANK,
            model=reranking_model_name
        )

        rerank_runner = RerankRunner(rerank_model_instance)
        all_documents = rerank_runner.run(query, all_documents,
                                          score_threshold,
                                          top_k)
        self._on_query(query, dataset_ids, app_id, user_from, user_id)
        if all_documents:
            self._on_retrival_end(all_documents)
        return all_documents

    def _on_retrival_end(self, documents: list[Document]) -> None:
        """Handle retrival end."""
        for document in documents:
            query = db.session.query(DocumentSegment).filter(
                DocumentSegment.index_node_id == document.metadata['doc_id']
            )

            # if 'dataset_id' in document.metadata:
            if 'dataset_id' in document.metadata:
                query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])

            # add hit count to document segment
            query.update(
                {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
                synchronize_session=False
            )

            db.session.commit()

    def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
        """

        Handle query.

        """
        if not query:
            return
        for dataset_id in dataset_ids:
            dataset_query = DatasetQuery(
                dataset_id=dataset_id,
                content=query,
                source='app',
                source_app_id=app_id,
                created_by_role=user_from,
                created_by=user_id
            )
            db.session.add(dataset_query)
        db.session.commit()

    def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
        with flask_app.app_context():
            dataset = db.session.query(Dataset).filter(
                Dataset.id == dataset_id
            ).first()

            if not dataset:
                return []

            # get retrieval model , if the model is not setting , using default
            retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model

            if dataset.indexing_technique == "economy":
                # use keyword table query
                documents = RetrievalService.retrieve(retrival_method='keyword_search',
                                                      dataset_id=dataset.id,
                                                      query=query,
                                                      top_k=top_k
                                                      )
                if documents:
                    all_documents.extend(documents)
            else:
                if top_k > 0:
                    # retrieval source
                    documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
                                                          dataset_id=dataset.id,
                                                          query=query,
                                                          top_k=top_k,
                                                          score_threshold=retrieval_model['score_threshold']
                                                          if retrieval_model['score_threshold_enabled'] else None,
                                                          reranking_model=retrieval_model['reranking_model']
                                                          if retrieval_model['reranking_enable'] else None
                                                          )

                    all_documents.extend(documents)

    def to_dataset_retriever_tool(self, tenant_id: str,

                                  dataset_ids: list[str],

                                  retrieve_config: DatasetRetrieveConfigEntity,

                                  return_resource: bool,

                                  invoke_from: InvokeFrom,

                                  hit_callback: DatasetIndexToolCallbackHandler) \
            -> Optional[list[DatasetRetrieverBaseTool]]:
        """

        A dataset tool is a tool that can be used to retrieve information from a dataset

        :param tenant_id: tenant id

        :param dataset_ids: dataset ids

        :param retrieve_config: retrieve config

        :param return_resource: return resource

        :param invoke_from: invoke from

        :param hit_callback: hit callback

        """
        tools = []
        available_datasets = []
        for dataset_id in dataset_ids:
            # get dataset from dataset id
            dataset = db.session.query(Dataset).filter(
                Dataset.tenant_id == tenant_id,
                Dataset.id == dataset_id
            ).first()

            # pass if dataset is not available
            if not dataset:
                continue

            # pass if dataset is not available
            if (dataset and dataset.available_document_count == 0
                    and dataset.available_document_count == 0):
                continue

            available_datasets.append(dataset)

        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
            # get retrieval model config
            default_retrieval_model = {
                'search_method': 'semantic_search',
                'reranking_enable': False,
                'reranking_model': {
                    'reranking_provider_name': '',
                    'reranking_model_name': ''
                },
                'top_k': 2,
                'score_threshold_enabled': False
            }

            for dataset in available_datasets:
                retrieval_model_config = dataset.retrieval_model \
                    if dataset.retrieval_model else default_retrieval_model

                # get top k
                top_k = retrieval_model_config['top_k']

                # get score threshold
                score_threshold = None
                score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
                if score_threshold_enabled:
                    score_threshold = retrieval_model_config.get("score_threshold")

                tool = DatasetRetrieverTool.from_dataset(
                    dataset=dataset,
                    top_k=top_k,
                    score_threshold=score_threshold,
                    hit_callbacks=[hit_callback],
                    return_resource=return_resource,
                    retriever_from=invoke_from.to_source()
                )

                tools.append(tool)
        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
            tool = DatasetMultiRetrieverTool.from_dataset(
                dataset_ids=[dataset.id for dataset in available_datasets],
                tenant_id=tenant_id,
                top_k=retrieve_config.top_k or 2,
                score_threshold=retrieve_config.score_threshold,
                hit_callbacks=[hit_callback],
                return_resource=return_resource,
                retriever_from=invoke_from.to_source(),
                reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
                reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
            )

            tools.append(tool)

        return tools