File size: 2,289 Bytes
4304c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import logging
import time

import click
from celery import shared_task

from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.models.document import Document
from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService


@shared_task(queue='dataset')
def update_annotation_to_index_task(annotation_id: str, question: str, tenant_id: str, app_id: str,

                                    collection_binding_id: str):
    """

    Update annotation to index.

    :param annotation_id: annotation id

    :param question: question

    :param tenant_id: tenant id

    :param app_id: app id

    :param collection_binding_id: embedding binding id



    Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)

    """
    logging.info(click.style('Start update index for annotation: {}'.format(annotation_id), fg='green'))
    start_at = time.perf_counter()

    try:
        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
            collection_binding_id,
            'annotation'
        )

        dataset = Dataset(
            id=app_id,
            tenant_id=tenant_id,
            indexing_technique='high_quality',
            embedding_model_provider=dataset_collection_binding.provider_name,
            embedding_model=dataset_collection_binding.model_name,
            collection_binding_id=dataset_collection_binding.id
        )

        document = Document(
            page_content=question,
            metadata={
                "annotation_id": annotation_id,
                "app_id": app_id,
                "doc_id": annotation_id
            }
        )
        vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
        vector.delete_by_metadata_field('annotation_id', annotation_id)
        vector.add_texts([document])
        end_at = time.perf_counter()
        logging.info(
            click.style(
                'Build index successful for annotation: {} latency: {}'.format(annotation_id, end_at - start_at),
                fg='green'))
    except Exception:
        logging.exception("Build index for annotation failed")