File size: 4,588 Bytes
4304c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import logging
import time

import click
from celery import shared_task

from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import Document
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment
from models.dataset import Document as DatasetDocument


@shared_task(queue='dataset')
def deal_dataset_vector_index_task(dataset_id: str, action: str):
    """

    Async deal dataset from index

    :param dataset_id: dataset_id

    :param action: action

    Usage: deal_dataset_vector_index_task.delay(dataset_id, action)

    """
    logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
    start_at = time.perf_counter()

    try:
        dataset = Dataset.query.filter_by(
            id=dataset_id
        ).first()

        if not dataset:
            raise Exception('Dataset not found')
        index_type = dataset.doc_form
        index_processor = IndexProcessorFactory(index_type).init_index_processor()
        if action == "remove":
            index_processor.clean(dataset, None, with_keywords=False)
        elif action == "add":
            dataset_documents = db.session.query(DatasetDocument).filter(
                DatasetDocument.dataset_id == dataset_id,
                DatasetDocument.indexing_status == 'completed',
                DatasetDocument.enabled == True,
                DatasetDocument.archived == False,
            ).all()

            if dataset_documents:
                documents = []
                for dataset_document in dataset_documents:
                    # delete from vector index
                    segments = db.session.query(DocumentSegment).filter(
                        DocumentSegment.document_id == dataset_document.id,
                        DocumentSegment.enabled == True
                    ) .order_by(DocumentSegment.position.asc()).all()
                    for segment in segments:
                        document = Document(
                            page_content=segment.content,
                            metadata={
                                "doc_id": segment.index_node_id,
                                "doc_hash": segment.index_node_hash,
                                "document_id": segment.document_id,
                                "dataset_id": segment.dataset_id,
                            }
                        )

                        documents.append(document)

                # save vector index
                index_processor.load(dataset, documents, with_keywords=False)
        elif action == 'update':
            # clean index
            index_processor.clean(dataset, None, with_keywords=False)
            dataset_documents = db.session.query(DatasetDocument).filter(
                DatasetDocument.dataset_id == dataset_id,
                DatasetDocument.indexing_status == 'completed',
                DatasetDocument.enabled == True,
                DatasetDocument.archived == False,
            ).all()
            # add new index
            if dataset_documents:
                documents = []
                for dataset_document in dataset_documents:
                    # delete from vector index
                    segments = db.session.query(DocumentSegment).filter(
                        DocumentSegment.document_id == dataset_document.id,
                        DocumentSegment.enabled == True
                    ).order_by(DocumentSegment.position.asc()).all()
                    for segment in segments:
                        document = Document(
                            page_content=segment.content,
                            metadata={
                                "doc_id": segment.index_node_id,
                                "doc_hash": segment.index_node_hash,
                                "document_id": segment.document_id,
                                "dataset_id": segment.dataset_id,
                            }
                        )

                        documents.append(document)

                # save vector index
                index_processor.load(dataset, documents, with_keywords=False)

        end_at = time.perf_counter()
        logging.info(
            click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
    except Exception:
        logging.exception("Deal dataset vector index failed")