File size: 4,384 Bytes
4304c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
from collections.abc import Generator

import pytest

from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
    AssistantPromptMessage,
    PromptMessageTool,
    SystemPromptMessage,
    UserPromptMessage,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.zhipuai.llm.llm import ZhipuAILargeLanguageModel


def test_validate_credentials():
    model = ZhipuAILargeLanguageModel()

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(
            model='chatglm_turbo',
            credentials={
                'api_key': 'invalid_key'
            }
        )

    model.validate_credentials(
        model='chatglm_turbo',
        credentials={
            'api_key': os.environ.get('ZHIPUAI_API_KEY')
        }
    )


def test_invoke_model():
    model = ZhipuAILargeLanguageModel()

    response = model.invoke(
        model='chatglm_turbo',
        credentials={
            'api_key': os.environ.get('ZHIPUAI_API_KEY')
        },
        prompt_messages=[
            UserPromptMessage(
                content='Who are you?'
            )
        ],
        model_parameters={
            'temperature': 0.9,
            'top_p': 0.7
        },
        stop=['How'],
        stream=False,
        user="abc-123"
    )

    assert isinstance(response, LLMResult)
    assert len(response.message.content) > 0


def test_invoke_stream_model():
    model = ZhipuAILargeLanguageModel()

    response = model.invoke(
        model='chatglm_turbo',
        credentials={
            'api_key': os.environ.get('ZHIPUAI_API_KEY')
        },
        prompt_messages=[
            UserPromptMessage(
                content='Hello World!'
            )
        ],
        model_parameters={
            'temperature': 0.9,
            'top_p': 0.7
        },
        stream=True,
        user="abc-123"
    )

    assert isinstance(response, Generator)

    for chunk in response:
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True


def test_get_num_tokens():
    model = ZhipuAILargeLanguageModel()

    num_tokens = model.get_num_tokens(
        model='chatglm_turbo',
        credentials={
            'api_key': os.environ.get('ZHIPUAI_API_KEY')
        },
        prompt_messages=[
            SystemPromptMessage(
                content='You are a helpful AI assistant.',
            ),
            UserPromptMessage(
                content='Hello World!'
            )
        ]
    )

    assert num_tokens == 14

def test_get_tools_num_tokens():
    model = ZhipuAILargeLanguageModel()

    num_tokens = model.get_num_tokens(
        model='tools',
        credentials={
            'api_key': os.environ.get('ZHIPUAI_API_KEY')
        },
        tools=[
            PromptMessageTool(
                name='get_current_weather',
                description='Get the current weather in a given location',
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                        "type": "string",
                            "description": "The city and state e.g. San Francisco, CA"
                        },
                        "unit": {
                            "type": "string",
                            "enum": [
                                "c",
                                "f"
                            ]
                        }
                    },
                    "required": [
                        "location"
                    ]
                }
            )
        ],
        prompt_messages=[
            SystemPromptMessage(
                content='You are a helpful AI assistant.',
            ),
            UserPromptMessage(
                content='Hello World!'
            )
        ]
    )

    assert num_tokens == 108